J. Mater. Sci. Technol. ›› 2021, Vol. 89: 133-140.DOI: 10.1016/j.jmst.2021.02.022
Previous Articles Next Articles
Decheng Konga,b, Chaofang Donga,*(), Xiaoqing Nic, Zhang Liangc, Xiaogang Lia
Received:
2020-07-17
Revised:
2020-11-29
Accepted:
2021-02-05
Published:
2021-10-30
Online:
2021-10-30
Contact:
Chaofang Dong
About author:
*E-mail address: cfdong@ustb.edu.cn (C. Dong).Decheng Kong, Chaofang Dong, Xiaoqing Ni, Zhang Liang, Xiaogang Li. In-situ observation of asymmetrical deformation around inclusion in a heterogeneous additively manufactured 316L stainless steel[J]. J. Mater. Sci. Technol., 2021, 89: 133-140.
Fig. 1. (a) ECCI results of the oxide inclusion distribution (a typical region with a big inclusion), (b) the inclusion size distribution and the cumulative percentage of the inclusion size in bulk SLMed 316 L SS, (c) (d) HRTEM micrograph showed the interface between the inclusion and surrounding matrix, (e) Scheil model simulation: temperature as a function of the fraction of solid for 316 L SS composition with 0.03 wt.% oxygen content.
Fig. 2. (a) IPF + IQ maps and (b) grain size distribution of SLMed 316 L SS on the plane vertical to the building direction, (c) non-uniform cellular structure distributes in the etched SLMed 316 L SS surface (the plane is vertical to building direction) and the white arrows indicate the big cellular structure.
Fig. 4. In-situ ECCI results focusing on a typical region that contains a big inclusion: (a) no deformation, (b1) (b2) (b3) the cell boundary distance along the slip direction at different regions marked in (a), (c) 2% deformation. An enlarged area for ECCI observation (d) before and (e) after 2% deformation. The white arrows indicate the dislocations, the green arrows show the slip bands, and the dashed red arrows show the dislocation moving directions, respectively.
Slip or twin plane | Slip direction | Schmid factor for slip | Twin direction | Schmid factor for twin |
---|---|---|---|---|
(111) | [$1\bar{1}0$] | 0.443 | [$11\bar{2}$] | 0.068 |
[$10\bar{1}$] | 0.280 | [$2\bar{1}\bar{1}$] | 0.418 | |
[$0\bar{1}1$] | 0.163 | [$1\bar{2}1$] | 0.350 | |
($\bar{1}11$) | [$\bar{1}\bar{1}0$] | 0.134 | [$\bar{2}\bar{1}\bar{1}$] | 0.174 |
[$\bar{1}0\bar{1}$] | 0.168 | [$\bar{1}\bar{2}1$] | 0.057 | |
[$01\bar{1}$] | 0.035 | [$\bar{1}1\bar{2}$] | 0.117 | |
($1\bar{1} 1$) | [ | 0.497 (max) | [$21\bar{1}$] | 0.415 |
[$10\bar{1}$] | 0.222 | [ | 0.446 (max) | |
[ | 0.275 | [$1\bar{2}\bar{1}$] | 0.044 | |
($\bar{1 }1$) | [$\bar{1}10$] | 0.187 | [$\bar{2}1\bar{1}$] | 0.300 |
[$\bar{1}0\bar{1}$] | 0.333 | [$\bar{1}21$] | 0.023 | |
[$0\bar{1}\bar{1}$] | 0.147 | [$\bar{1}\bar{1}\bar{2}$] | 0.277 |
Table 1 Schmid factor results for plastic slip and shear-assisted deformed twin within the grain with a big inclusion (only positive values are listed for simplicity).
Slip or twin plane | Slip direction | Schmid factor for slip | Twin direction | Schmid factor for twin |
---|---|---|---|---|
(111) | [$1\bar{1}0$] | 0.443 | [$11\bar{2}$] | 0.068 |
[$10\bar{1}$] | 0.280 | [$2\bar{1}\bar{1}$] | 0.418 | |
[$0\bar{1}1$] | 0.163 | [$1\bar{2}1$] | 0.350 | |
($\bar{1}11$) | [$\bar{1}\bar{1}0$] | 0.134 | [$\bar{2}\bar{1}\bar{1}$] | 0.174 |
[$\bar{1}0\bar{1}$] | 0.168 | [$\bar{1}\bar{2}1$] | 0.057 | |
[$01\bar{1}$] | 0.035 | [$\bar{1}1\bar{2}$] | 0.117 | |
($1\bar{1} 1$) | [ | 0.497 (max) | [$21\bar{1}$] | 0.415 |
[$10\bar{1}$] | 0.222 | [ | 0.446 (max) | |
[ | 0.275 | [$1\bar{2}\bar{1}$] | 0.044 | |
($\bar{1 }1$) | [$\bar{1}10$] | 0.187 | [$\bar{2}1\bar{1}$] | 0.300 |
[$\bar{1}0\bar{1}$] | 0.333 | [$\bar{1}21$] | 0.023 | |
[$0\bar{1}\bar{1}$] | 0.147 | [$\bar{1}\bar{1}\bar{2}$] | 0.277 |
Fig. 5. In-situ tensile test at the big inclusion region: (a) engineering strain and stress curve during the in-situ tensile test at different strain levels, (b1-b7) a series of secondary electronic images of the big inclusion evolution under different deformation levels until fracture.
Fig. 6. (a1-a7) Enlarged secondary electronic images of the big and small inclusions under different deformation levels until failure. The left and right crack length near the inclusions with the global engineering strain: (b) big inclusion (~500 nm) and (c) small inclusion (~80 nm), respectively.
Fig. 7. EBSD results for the in-situ tensile test under different deformation levels. For 15 % deformation level: (a1) IPF + IQ maps, (a2) KAM map, (a3) misorientation along the red line. EBSD result of the polished surface after the failure for the SLMed 316 L SS: (b1) IPF map, (b2) KAM map and (b3) ECCI results of the same area, showing that the deformed nano-twins can grow to cross the small inclusions. For 25 % deformation level: (c1) IPF + IQ maps, (c2) KAM map, (c3) ECCI results of the deformed nano twin cluster, white arrows indicated the nano-twin sites. The sketch diagram for the dislocation, slip, crack and nano twin evolution with the increasing strain levels: (d1) initial stage, (d2) slip band initiation and crack occurred near the inclusion, (d3) nano twin initiation (d4) nano twin growth and crack propagated, respectively. The big inclusion sites are marked using big red arrows in (a1, a2, c1, c2).
Fig. 8. (a) The secondary electronic image of the tensile sample after failure with the equal cracking length for the left and right part of one big inclusion, (b) Statistical percentage results of the symmetric and asymmetric cracking on the sample surface after failure, more than 20 cracks were taken into accountMeanwhile, even cracks are first formed around the big inclusion; the earlier formed deformation-induced nano-twins around the inclusion can resist the crack propagation, which results in a very high localized plasticity around the inclusion and maintains an overall high post-necking elongation for the bulk materials. In the future, we could design the cellular structure configuration around the inclusions by changing the printing parameters, to control the cracking path. If a tortuous cracking path can be achieved, then a tough bulk AM material can be expected. However, the crack damage caused by big inclusion is much larger than the small inclusion, indicating the modest detrimental effect on the global toughness for small inclusions. Further reducing the size and density of the oxide inclusions in additively manufactured components is needed, methods, such as reducing the oxygen content both for the powder and printing atmosphere or adding some high oxygen consumption alloying elements, can be conducted to obtain better mechanical properties.
[1] | J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, M. A.Peltz , J. Res. Inst. Stand. Technol. 119 (2014) 460-493. |
[2] |
Y. Sun, R.J. Hebert, M. Aindow, Mater. Des. 140 (2018) 153-162.
DOI URL |
[3] | L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, , J. Mater. Sci. Technol. 28 (2012) 1-14. |
[4] |
Y.M. Wang, T. Voisin, J.T.McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang,W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V.Hamza, T. Zhu, Nat. Mater. 17 (2018) 63-69.
DOI URL |
[5] |
F. Yan, W. Xiong, E. Faierson, G.B. Olson, Scr. Mater. 155 (2018) 104-108.
DOI URL |
[6] |
T.R. Smith, J.D. Sugar, C. San Marchi, J.M. Schoenung, Acta Mater. 164 (2019) 728-740.
DOI URL |
[7] |
Z.J. Sun, X.P. Tan, S.B. Tor, W.Y. Yeong, Mater. Des. 104 (2016) 197-204.
DOI URL |
[8] |
X. Lou, P.L. Andresen, R.B. Rebak, , J. Nucl. Mater. 499 (2018) 182-190.
DOI URL |
[9] | Z. Li, T. Voisin, J.T.McKeown, J.C. Ye, T. Braun, C. Kamath, W.E. King, Y.M.Wang, Int. J. Plast. 120 (2019) 395-410. |
[10] |
M.H. Song, X. Lin, F.G. Liu, H.O. Yang, W.D. Huang, Mater. Des. 90 (2016) 459-467.
DOI URL |
[11] |
D. Kong, C. Dong, X. Ni, L. Zhang, C. Man, J. Yao, Y. Ji, Y. Ying, K. Xiao, X. Cheng, X. Li, , J. Alloys Compd. 785 (2019) 826-837.
DOI URL |
[12] | D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, R.X. Li, L. Wang, C. Man, X.G. Li, Int. J.Miner. Metall. Mater 28 (2021) 266-278. |
[13] |
D.C. Kong, C.F. Dong, X.Q. Ni, X.G. Li, Corros. Sci. 166 (2020), 108425.
DOI URL |
[14] |
M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Acta Mater. 57 (2009) 941-971.
DOI URL |
[15] |
D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man, X. G.Li, Appl. Surf. Sci. 504 (2020), 144495.
DOI URL |
[16] |
D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, C. Man, X.G. Li, Mater. Lett. 279 (2020),128524.
DOI URL |
[17] |
G. Wang, H. Ouyang, C. Fan, Q. Guo, Mater. Res. Lett. 8 (2020) 283-290.
DOI URL |
[18] |
K.M. Bertsch, G.M. Bellefon, B. Kuehl, Acta Mater. 199 (2020) 19-33.
DOI URL |
[19] |
L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, Z. J.Shen , Mater. Today 21 (2018) 354-361.
DOI URL |
[20] |
D.C. Kong, C.F. Dong, X.Q. Ni, X.G. Li, Mater. Res. Lett. 8 (2020) 390-397.
DOI URL |
[21] |
Z. Li, B. He, Q. Guo, Scr. Mater. 177 (2020) 17-21.
DOI URL |
[22] | D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Mater.Des. 152 (2018) 88-101. |
[23] | X. Ni, D. Kong, W. Wu, L. Zhang, C. Dong, B. He, L. Lu, K. Wu, D. Zhu, J. Mater.Eng. Perform. 27 (2018) 3667-3677. |
[24] |
K. Saeidi, L. Kvetková, F. Lofaj, Z. Shen, RSC Adv. 5 (2015) 20747-20750.
DOI URL |
[25] |
O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert, S. Scudino, Mater. Sci. Eng. A 748 (2019) 205-212.
DOI URL |
[26] |
D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Electrochim. Acta 276 (2018) 293-303.
DOI URL |
[27] | D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, J.Mater. Sci. Technol. 35 (2019) 1499-1507. |
[28] |
Hl. Yu, X.H. Liu, H.Y. Bi, L.Q. Chen, J. Mater. Process. Technol. 209 (2009) 455-461.
DOI URL |
[29] | R.B. Song, J.Y. Xiang, D.P. Hou, J. Iron Steel Res. Int. 18 (2011) 53-59. |
[30] |
L. Weber, M. Kouzeli, C. San Marchi, A. Mortensen, Scr. Mater. 41 (1999) 549-551.
DOI URL |
[31] |
S. Wei, J. Kim, C.C. Tasan, Acta Mater. 168 (2019) 76-86.
DOI URL |
[32] |
M. Fan, D.K. Yi, Z.M. Xiao, Int. J. Solids Struct. 51 (2014) 3399-3409.
DOI URL |
[33] |
R.B. Sills, B.L. Boyce, Mater. Res. Lett. 8 (2020) 103-109.
DOI URL |
[34] | S.S. Rui, L.S. Niu, H.J. Shi, S.L. Wei, C.C. Tasan,, J. Mech. Phys. Solids 133 (2019),103709. |
[35] | A.A. Griffith, Philos. Trans. Ser. A 221 (1920) 163-198. |
[36] |
J.G. Sevillano, Scr. Mater. 60 (2009) 336-339.
DOI URL |
[37] |
Z.J. Sun, X.P. Tan, S.B. Tor, C.K. Chua, NPG Asia Mater. 10 (4) (2018) 127-136.
DOI URL |
[1] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[2] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[3] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[4] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[5] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[6] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[7] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[8] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[9] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[10] | Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis [J]. J. Mater. Sci. Technol., 2020, 41(0): 56-67. |
[11] | Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting [J]. J. Mater. Sci. Technol., 2020, 41(0): 199-208. |
[12] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[13] | Yuan Zhong, Leifeng Liu, Ji Zou, Xiaodong Li, Daqing Cui, Zhijian Shen. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 97-105. |
[14] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[15] | Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48(0): 44-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||