Please wait a minute...
J. Mater. Sci. Technol.  2017, Vol. 33 Issue (10): 1172-1176    DOI: 10.1016/j.jmst.2017.05.012
Orginal Article Current Issue | Archive | Adv Search |
Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering
Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan*(), Lei Liwen, Xiao Han, Fu Zhengyi
State Key Lab of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      

We proposed a new method, electroplating followed by spark plasma sintering (SPS), to fabricate laminated TiB2-B4C/Cu-Ni composites with high strength and high toughness. It is found that a thin intermediate Cu layer can effectively enhance the strength of the interface between the ceramics and the metals, resulting in a high flexural strength and toughness of the laminated TiB2-B4C composites simultaneously. A flexural strength and fracture toughness of 651 MPa and 11.6 MPa m1/2 respectively, are achieved, an approximately 90% improvement over TiB2-B4C bulk.

Key words:  Laminated structure      Electroplating      Spark plasma sintering      B4C ceramic     
Received:  11 February 2017     
Corresponding Authors:  Zhang Fan     E-mail:
About author: 

1 These two authors contributed equally to this paper.

Cite this article: 

Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan, Lei Liwen, Xiao Han, Fu Zhengyi. Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering. J. Mater. Sci. Technol., 2017, 33(10): 1172-1176.

URL:     OR

Fig. 1.  SEM images of electroplated TBC plate cross-sections: (a) Ni-electroplated; (b) Cu-Ni electroplated.
Fig. 2.  (a) SEM image of the cross-section of the laminated TBC/Cu-Ni after welding (b) TBC/Ni composites (c) TBC/Cu-Ni composites.
Fig. 3.  Cu and Ni distributions in the TBC/Cu-Ni specimens. (a) SEM image showing the scan pathways; (b) typical distributions near the tunnels; (c) thickness of Ni entering into the TBC with different SPS sintering temperatures.
Fig. 4.  XRD patterns of the Cu-Ni layer after/before sintering.
Fig. 5.  Flexural strength and fracture toughness of laminated TBC composites: 0-pure TBC; 1-sintered at 900 °C, 5 min; 2-sintered at 950 °C, 5 min; 3- sintered at 1050 °C, 10 min.
Fig. 6.  Typical fracture surface of the laminated composites.
[1] F. Thévenot, J. Eur.Ceram.Soc..6(1990) 205-225.
[2] V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am.Ceram.Soc..94(2011) 3605-3628.
[3] S. Hayun, V. Paris, M.P. Dariel, N. Frage, E. Zaretzky, J. Eur.Ceram.Soc..29(2009) 3395-3400.
[4] M.S. Heydari, H.R. Baharvandi, Int. J. Refract. Met. Hard Mater. 51(2015)224-232.
[5] H. Latifi, A. Moradkhani, H. Baharvandi, J. Martikainen, Mater. Des. 62(2014)392-400.
[6] M. Mashhadi, E. Taheri-Nassaj, V.M. Sglavo, Ceram. Int. 36(2010) 151-159.
[7] X.J. Gao, J.W. Cao, L.F. Cheng, D.M. Yan, C. Zhang, P. Man, J. Inorg.Mater..30(2015) 102-106.
[8] S.S. Rehman, W. Ji, S.A. Khan, Z.Y. Fu, F. Zhang, Ceram. Int. 41(2015)1903-1906.
[9] S.G. Huang, K. Vanmeensel, O.V.D.Biest, J. Vleugels, J.Eur. Ceram. Soc. 31(2011) 637-644.
[10] E. Ghasali, M. Alizadeh, T. Ebadzadeh, J. AlloyCompd..655(2016) 93-98.
[11] A.R. Studart, Nat. Mater. 13(2014) 433-435.
[12] F. Bouville, E. Maire, S. Meille, B.V.D.Moortèle, A.J. Stevenson, S. Deville, Nat.Mater. 13(2014) 508-514.
[13] W.J. Tang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang,Powder Technol. 167(2006) 117-123.
[14] W. Ji, J.Y. Zhang, W.M. Wang, H. Wang, F. Zhang, Y.C. Wang, Z.Y. Fu, J.Eur.Ceram.Soc..35(2015) 879-886.
[15] Z.X. Zhang, X.W. Du, Z.L. Li, W.M. Wang, J.Y. Zhang, Z.Y. Fu, J. Eur. Ceram.Soc.34(2014) 2153-2161.
[16] F. Qiu, J.G. Chu, W. Hu, J.B. Lu, X.D. Li, Y. Han, Q.C. Jiang, Mater. Res. Bull. 70(2015) 167-172.
[17] R. Marder, C. Estournès, G. Chevallier, R. Chaim, Scripta Mater. 82(2014)57-60.
[18] J.P. Song, C.Z. Huang, B. Zou, H.L. Liu, L. Liu, J. Wang, Int. J. Refract. Met. Hard.Mater. 30(2012) 91-95.
[19] A. Cohades, A. Mortensen, Acta. Mater. 71(2014) 31-43.
[1] Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering[J]. 材料科学与技术, 2020, 41(0): 149-158.
[2] S.L. Xie, Z.B. Wang, K. Lu. Diffusion behavior of Cr in gradient nanolaminated surface layer on an interstitial-free steel[J]. 材料科学与技术, 2019, 35(3): 460-464.
[3] Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. 材料科学与技术, 2019, 35(11): 2600-2607.
[4] Quangquan Do, Hongze An, Guozhe Meng, Weihua Li, Lai-Chang Zhang, Yangqiu Wang, Bin Liu, Junyi Wang, Fuhui Wang. Low-valence ion addition induced more compact passive films on nickel-copper nano-coatings[J]. 材料科学与技术, 2019, 35(10): 2144-2155.
[5] Wang Qunchang, Chen Minghui, Shan Zhongmao, Sui Chengguo, Zhang Lin, Zhu Shenglong, Wang Fuhui. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing[J]. 材料科学与技术, 2017, 33(11): 1416-1423.
[6] Xiaopu Li, Chongyu Liu, Kun Luo, Mingzhen Ma, Riping Liu. Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering[J]. J. Mater. Sci. Technol., 2016, 32(4): 291-298.
[7] Li R.T.,K. Murugan Vinod,Dong Z.L.,Khor K.A.. Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al[J]. 材料科学与技术, 2016, 32(10): 1054-1058.
[8] Hefei Huang, Chao Yang, Massey de los Reyes, Yongfeng Zhou, Long Yan, Xingtai Zhou. Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature[J]. J. Mater. Sci. Technol., 2015, 31(9): 923-929.
[9] Hansang Kwon, Marc Leparoux, Akira Kawasaki. Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering[J]. J. Mater. Sci. Technol., 2014, 30(8): 736-742.
[10] Shufeng Li, Hisashi Imai, Katsuyoshi Kondoh. Microstructure, Phase Transformation, Precipitation Behavior and Mechanical Properties of P/M Cu40Zne1.0 wt% Ti Brass Alloy via Spark Plasma Sintering and Hot Extrusion[J]. J. Mater. Sci. Technol., 2013, 29(11): 1018-1024.
[11] Sivaiah Bathula, Saravanan M, Ajay Dhar. Nanoindentation and Wear Characteristics of Al 5083/SiCp Nanocomposites Synthesized by High Energy Ball Milling and Spark Plasma Sintering[J]. J. Mater. Sci. Technol., 2012, 28(11): 969-975.
[12] X. Li, T.F. Jing, M.M. Lu, R. Xu, B.Y. Liang, J.W. Zhang. Fatigue Property of Nano-grained Delaminated Low-carbon Steel Sheet[J]. J. Mater. Sci. Technol., 2011, 27(4): 364-368.
[13] A.M. Rashidi A. Amadeh. Effect of Electroplating Parameters on Microstructure of Nanocrystalline Nickel Coatings[J]. J. Mater. Sci. Technol., 2010, 26(1): 82-86.
[14] Yuan Zewei,ZhuJi Jin,Xingwei Ma,Boxian Dong. Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film[J]. J. Mater. Sci. Technol., 2009, 25(03): 319-324.
[15] Yuanyuan LI, Xiaoqiang LI, Yan LONG, Wei XIA, Min ZHU, Weiping CHEN. Fabrication of Iron-base Alloy by Spark Plasma Sintering[J]. J. Mater. Sci. Technol., 2006, 22(02): 257-260.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.