Please wait a minute...
J. Mater. Sci. Technol.  2016, Vol. 32 Issue (4): 291-298    DOI: 10.1016/j.jmst.2015.12.006
Orignal Article Current Issue | Archive | Adv Search |
Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering
Xiaopu Li1, *, Chongyu Liu2, 3, *, Kun Luo2, 3, Mingzhen Ma1, Riping Liu1
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.;
2 Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China.;
3 Guangxi Key Laboratory of Universities for Clean Metallurgy and Comprehensive Utilization of Nonferrous Metal Resources, Guilin University of Technology, Guilin 541004, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this study, SiC/AA6061 composites with different SiC volume fractions (5%, 10%, 15% and 20%) were fabricated by spark plasma sintering. The deformation behaviour of the composites was studied by uniaxial compression test at temperatures from 573 K to 773 K and strain rates between 0.001 s-1 and 1 s-1. Results indicate that the flow stress of SiC/AA6061 composites increases with the increase of SiC volume fraction, with the decrease of deformation temperature and with the decrease of strain rate. The main deformation mechanism of the composites is dynamic recrystallisation (DRX), and the DRX degree depends on the processing parameters of deformation. Higher SiC volume fraction, higher deformation temperature and lower deformation strain rate promote the occurrence of DRX. The strain rate sensitivity and deformation activation energy of SiC/AA6061 composites are calculated. Results show that with the increase in deformation temperature and the decrease in SiC volume fraction, the strain rate sensitivity of the composites increases. From 573 K to 773 K, the average deformation activation energy of 5vol.%SiC/AA6061, 10vol.%SiC/AA6061, 15vol.%SiC/AA6061 and 20vol.%SiC/AA6061 are 207.91, 230.88, 237.7 and 249.87 kJ mol-1, respectively. The optimum hot working zone of the SiC/AA6061 composites is in the temperature range of 723 K to 773 K at strain rates from 0.1 s-1 to 1 s-1.
Key words:  Spark plasma sintering      Hot deformation      Al alloy matrix composites     
Received:  22 September 2015     
Fund: This work was funded by the National Basic Research Program of China (No. 2013CB733000), the Guangxi Natural Science Foundation (No. 2015GXNSFBA139238), and the Guangxi ‘Bagui’ Teams for Innovation and Research.
Corresponding Authors:  Ph.D.; Tel.: +86 335 8057047; Fax: +86 335 8074545. E-mail addresses: lcy261@glut.edu.cn (C. Liu); lxpcn@ysu.edu.cn (X. Li).   

Cite this article: 

Xiaopu Li, Chongyu Liu, Kun Luo, Mingzhen Ma, Riping Liu. Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering. J. Mater. Sci. Technol., 2016, 32(4): 291-298.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2015.12.006     OR     https://www.jmst.org/EN/Y2016/V32/I4/291

[1] C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, R.P. Liu Mater. Des, 43 (2013), pp. 367-372
[2] M.H. Korkut Mater. Sci. Technol, 20 (2004), pp. 73-81
[3] Y. Sahin Mater. Des, 24 (2003), pp. 671-679
[4] Y. Cui, L.F. Wang, J.Y. Ren Chin. J. Aeronaut, 21 (2008), pp. 578-584
[5] A.B. Sarmasti, M. Yazdanirad, M. Nouri Khezrabad, M. Karbalaie Mater. Sci. Technol, 27 (2011), pp. 1653-1656
[6] S.A. Sajjadi, H.R. Ezatpour, H. Beygi Mater. Sci. Eng. A, 528 (2011), pp. 8765-8771
[7] N. Chen, X.F. Pan, M.Y. Gu Mater. Sci. Technol, 25 (2009), pp. 400-402
[8] Y.H. Frank Su, Y.C. Chen, C.Y.A. Tsao Mater. Sci. Eng. A, 364 (2004), pp. 296-304
[9] Z.Q. Tan, Z.Q. Li, G.L. Fan, X.Z. Kai, G. Ji, L.T. Zhang, D. Zhang Compos. Part B, 47 (2013), pp. 173-180
[10] D.J. Lloyd Int. Mater. Rev, 39 (1994), pp. 1-23
[11] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao Mater. Sci. Eng. R, 63 (2009), pp. 127-287
[12] K. Chu, C.C. Jia, W.S. Li Mater. Sci. Technol, 28 (2012), pp. 1397-1401
[13] S. Bathula, R.C. Anandani, A. Dhar, A.K. Srivastava Mater. Sci. Eng. A, 545 (2012), pp. 97-102
[14] J.H. Wu, H.L. Zhang, Y. Zhang, X.T. Wang Mater. Des, 41 (2012), pp. 344-348
[15] K. Dash, D. Chaira, B.C. Ray Mater. Res. Bull, 48 (2013), pp. 2535-2542
[16] Y. Zhang, J.W. Li, L.L. Zhao, H.L. Zhang, X.T. Wang Mater. Des, 63 (2014), pp. 838-847
[17] E. Ghasali, A. Pakseresht, F. Safari-kooshali Mater. Sci. Eng. A, 627 (2015), pp. 27-30
[18] L. Perrière, Y. Champion Mater. Sci. Eng. A, 548 (2012), pp. 112-117
[19] R. Vintila, A. Charest, R.A.L. Drew, M. Brochu Mater. Sci. Eng. A, 528 (2011), pp. 4395-4407
[20] C. Rodríguez, F.J. Belzunce, C. Betegón, L. Goyos, L.A. Díaz, R. Torrecillas J. Alloy. Compd, 550 (2013), pp. 402-405
[21] M. Zabihi, M.R. Toroghinejad, A. Shafyei Mater. Sci. Eng. A, 560 (2013), pp. 567-574
[22] A. El-Sabbagha, M. Solimanb, M. Tahaa, H. Palkowskib J. Mater. Process. Technol, 212 (2012), pp. 497-508
[23] S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, J.F. Fan Mater. Des, 64 (2014), pp. 177-184
[24] H.J. McQueen Encyclopedia of Materials: Science and Technology Elsevier Science Publishers, Oxford, UK (2001), pp. 2375-2381
[25] H. Li, H. Wang, M. Zeng, X. Liang, H. Liu Compos. Sci. Technol, 71 (2011), pp. 925-930
[26] A. Yara, M. Montazerianb, H. Abdizadeh, H.R. Baharvandi J. Alloy. Compd, 484 (2009), pp. 400-404
[27] X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, D.L. Peng Compos. Sci. Technol, 67 (2007), pp. 2253-2260
[28] S. Serajzadeh, S. Ranjbar Motlagh, S.M.H. Mirbagheri, J.M. Akhgar Mater. Des, 67 (2015), pp. 318-323
[29] N.P. Jin, H. Zhang, Y. Han, W.X. Wu, J.H. ChenMater. Charact, 60 (2009), pp. 530-536
[30] Y. Zhu, W. Zeng, F. Feng, Y. Sun, Y. Han, Y. Zhou Mater. Sci. Eng. A, 528 (2011), pp. 1757-1763
[31] L. Saravanan, T. SenthilvelanMater. Des, 79 (2015), pp. 6-14
[1] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[2] Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method[J]. 材料科学与技术, 2020, 38(0): 125-134.
[3] Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain[J]. 材料科学与技术, 2020, 36(0): 160-166.
[4] Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering[J]. 材料科学与技术, 2020, 41(0): 149-158.
[5] Weili Cheng, Yang Bai, Shichao Ma, Lifei Wang, Hongxia Wang, Hui Yu. Hot deformation behavior and workability characteristic of a fine-grained Mg-8Sn-2Zn-2Al alloy with processing map[J]. 材料科学与技术, 2019, 35(6): 1198-1209.
[6] Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. 材料科学与技术, 2019, 35(11): 2600-2607.
[7] Liwei Zhong, Wenli Gao, Zhaohui Feng, Zheng Lu, Congcong Zhu. Hot deformation characterization of as-homogenized Al-Cu-Li X2A66 alloy through processing maps and microstructural evolution[J]. 材料科学与技术, 2019, 35(10): 2409-2421.
[8] Z. Liu, Z.B. Zhao, J.R. Liu, Q.J. Wang, R. Yanga. Distinct dendritic α phase emerging on the surface of primary α phase in a compressed near-α titanium alloy[J]. 材料科学与技术, 2018, 34(4): 666-669.
[9] Zhou Zhaohui, Fan Qichao, Xia Zhihui, Hao Aiguo, Yang Wenhua, Ji Wei, Cao Haiqiao. Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy[J]. 材料科学与技术, 2017, 33(7): 637-644.
[10] Zhou Yinghui, Liu Yongchang, Zhou Xiaosheng, Liu Chenxi, Yu Jianxin, Huang Yuan, Li Huijun, Li Wenya. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review[J]. 材料科学与技术, 2017, 33(12): 1448-1456.
[11] Wang Qunchang, Chen Minghui, Shan Zhongmao, Sui Chengguo, Zhang Lin, Zhu Shenglong, Wang Fuhui. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing[J]. 材料科学与技术, 2017, 33(11): 1416-1423.
[12] Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan, Lei Liwen, Xiao Han, Fu Zhengyi. Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering[J]. 材料科学与技术, 2017, 33(10): 1172-1176.
[13] Yang Yan,Peng Xiaodong,Ren Fengjuan,Wen Haiming,Su Junfei,Xie Weidong. Constitutive Modeling and Hot Deformation Behavior of Duplex Structured Mg-Li-Al-Sr Alloy[J]. 材料科学与技术, 2016, 32(12): 1289-1296.
[14] Li R.T.,K. Murugan Vinod,Dong Z.L.,Khor K.A.. Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al[J]. 材料科学与技术, 2016, 32(10): 1054-1058.
[15] Hefei Huang, Chao Yang, Massey de los Reyes, Yongfeng Zhou, Long Yan, Xingtai Zhou. Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature[J]. J. Mater. Sci. Technol., 2015, 31(9): 923-929.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.