J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (12): 1448-1456.DOI: 10.1016/j.jmst.2017.01.025
• Orginal Article • Previous Articles Next Articles
Zhou Yinghuiab, Liu Yongchangac*(), Zhou Xiaoshenga*(
), Liu Chenxia, Yu Jianxinac, Huang Yuana, Li Huijuna, Li Wenyab
Received:
2016-11-22
Revised:
2016-12-23
Accepted:
2016-12-26
Online:
2017-12-20
Published:
2018-01-30
Contact:
Liu Yongchang,Zhou Xiaosheng
Zhou Yinghui, Liu Yongchang, Zhou Xiaosheng, Liu Chenxi, Yu Jianxin, Huang Yuan, Li Huijun, Li Wenya. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review[J]. J. Mater. Sci. Technol., 2017, 33(12): 1448-1456.
Steels | Fe | C | Cr | Ni | Mn | Si | Mo | W | Nb | Ti | V | Cu | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NF709 | Bal. | 0.15 | 20.0 | 25.0 | 1.0 | 0.5 | 1.5 | - | 0.2 | 0.1 | - | - | 0.167 |
Super304H | Bal. | 0.1 | 18.0 | 9.0 | 0.8 | 0.2 | - | - | 0.4 | - | - | 3.0 | 0.1 |
Sanicro25 | Bal. | 0.08 | 22.0 | 25.0 | 1.0 | 0.1 | - | 3.5 | 0.5 | - | - | 3.0 | 0.5 |
TP347H | Bal. | 0.08 | 18.0 | 10.0 | 1.6 | 0.6 | - | - | 0.8 | - | - | - | 0.013 |
HR3C | Bal. | 0.06 | 22.0 | 25.0 | 1.0 | 0.5 | 1.5 | - | 0.45 | - | - | - | 0.2 |
Table 1 Typical chemical composition of austenitic heat resistant steels (in wt%).
Steels | Fe | C | Cr | Ni | Mn | Si | Mo | W | Nb | Ti | V | Cu | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NF709 | Bal. | 0.15 | 20.0 | 25.0 | 1.0 | 0.5 | 1.5 | - | 0.2 | 0.1 | - | - | 0.167 |
Super304H | Bal. | 0.1 | 18.0 | 9.0 | 0.8 | 0.2 | - | - | 0.4 | - | - | 3.0 | 0.1 |
Sanicro25 | Bal. | 0.08 | 22.0 | 25.0 | 1.0 | 0.1 | - | 3.5 | 0.5 | - | - | 3.0 | 0.5 |
TP347H | Bal. | 0.08 | 18.0 | 10.0 | 1.6 | 0.6 | - | - | 0.8 | - | - | - | 0.013 |
HR3C | Bal. | 0.06 | 22.0 | 25.0 | 1.0 | 0.5 | 1.5 | - | 0.45 | - | - | - | 0.2 |
Fig. 3. Various typical precipitates in TP347H austenitic heat-resistant steel: (a) SEM and (b) TEM micrographs of MX carbonitrides; (c) SEM and (d) TEM micrographs of M23C6 carbides; (e) TEM micrographs of Z phase; (f) EDS analysis of Z phase [45].
Fig. 4. Schematic of beaded M23C6 precipitates along dislocation lines in S31042 austenitic steel: (a) beaded precipitates (700 °C, 3000 h); (b) precipitates along dislocation lines [56].
Fig. 5. TEM micrograph showing grain boundary precipitate in the microstructure of Fe-20Cr-30Ni-2Nb austenitic steel after aging at 750 °C for 240 h: (a) Sigma phase [1]; (b) Laves phase [72].
Fig. 6. Schematic description of the coarsening model in Dictra Software. The moving phase interface between the particles (α) is in local equilibrium with the matrix (β). At the outer boundary the equilibrium is defined by the average composition in the system. The energy contribution due to the interfacial energy is 2σVm/rp for the largest particle and the other for the particles of average size [79].
Fig. 7. Typical TEM micrographs of extraction replica in type 347H steels after aging at 700 °C for 1 h (a), 500 h (b), 1000 h (c), 2200 h (d), respectively [80].
Fig. 8. SEM images of the base and Si-modified austenitic steels: (a) base alloy after aging at 800 °C for 100 h, (b) +Si steels after aging at 800 °C for 100 h [73].
|
[1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[2] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[3] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[4] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[7] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[8] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[9] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[10] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[11] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[12] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[13] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[14] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
[15] | Zhaohui Shan, Jing Bai, Jianfeng Fan, Hongfei Wu, Hua Zhang, Qiang Zhang, Yucheng Wu, Weiguo Li, Hongbiao Dong, Bingshe Xu. Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT [J]. J. Mater. Sci. Technol., 2020, 51(0): 111-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||