J. Mater. Sci. Technol. ›› 2020, Vol. 49: 56-69.DOI: 10.1016/j.jmst.2020.02.026
• Research Article • Previous Articles Next Articles
Zhixin Zhanga,c, Jiangkun Fana,b,*(), Bin Tanga,b, Hongchao Koua,b, Jian Wangc, Xin Wangc, Shiying Wangd, Qingjiang Wange, Zhiyong Chene, Jinshan Lia,b,*(
)
Received:
2019-11-18
Revised:
2020-01-02
Accepted:
2020-02-28
Published:
2020-07-15
Online:
2020-07-17
Contact:
Jiangkun Fan,Jinshan Li
Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65[J]. J. Mater. Sci. Technol., 2020, 49: 56-69.
Fig. 3. (a) Flow stress-strain curve with the corresponding microstructure of Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain: (b) 0.04; (c) 0.4; (d) 0.7.
Fig. 4. EBSD inverse pole figures (IPF) and the corresponding pole figures (PF) of Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different strain: (a) (b) 0.04; (c) (d) 0.4; (e) (f) 0.7.
Fig. 5. Three dimensional ODF (Euler space) and constant φ2 = 0°/30° ODF maps of Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain: (a) (b) (c) 0.04; (d) (e) (f) 0.4; (g) (h) (i) 0.7.
Fig. 6. Schmid factors (SF) histogram of α phase with Basal < a>, Prismatic < a> and Pyramidal < a> slip systems for Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain: (a) 0.04; (b) 0.4; (c) 0.7.
Slip system | Texture component | ||
---|---|---|---|
($\bar{1}$2$\bar{1}$5)[1$\bar{2}$11] | ($\bar{1}$2$\bar{1}$2)[4$\bar{5}$16] | (02$\bar{2}$3)[0$\bar{1}$11] | |
Basal < a> (0001)[11$\bar{2}$0] | 0 | 0.13 | 0.04 |
Prismatic < a> (1$\bar{1}$00)[11$\bar{2}$0] | 0.5 | 0.47 | 0.35 |
Pyramidal < a> (1$\bar{1}$01)[11$\bar{2}$0] | 0.40 | 0.31 | 0.26 |
Table 1 SFs of Basal, Prismatic and Pyramidal slip systems for different texture components formed at 0.4 and 0.6 strain.
Slip system | Texture component | ||
---|---|---|---|
($\bar{1}$2$\bar{1}$5)[1$\bar{2}$11] | ($\bar{1}$2$\bar{1}$2)[4$\bar{5}$16] | (02$\bar{2}$3)[0$\bar{1}$11] | |
Basal < a> (0001)[11$\bar{2}$0] | 0 | 0.13 | 0.04 |
Prismatic < a> (1$\bar{1}$00)[11$\bar{2}$0] | 0.5 | 0.47 | 0.35 |
Pyramidal < a> (1$\bar{1}$01)[11$\bar{2}$0] | 0.40 | 0.31 | 0.26 |
Fig. 8. Grain boundary contrast maps for Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain (a) 0.04, (b) 0.4, (c) 0.7 and (d) statistical diagram of misorientation angle, (e) the α grain size histogram. The high-angle boundaries (HABs) with misorientation over 15 deg and the low-angle boundaries (LABs) with misorientation at 2 to 15 deg are depicted as black lines and red lines, respectively.
Fig. 9. (a) Flow stress-strain curve with the corresponding microstructure of Ti65 alloy deformed at 1080 ℃ and 0.1 s-1 with different true strain: (b) 0.04; (c) 0.4; (d) 0.7.
Fig. 11. Three dimensional ODF (Euler space) and constant φ2 = 0°/30° ODF maps of Ti65 alloy deformed at 1080 ℃ and 0.1 s-1 with different true strain: (a) (b) (c) 0.04; (d) (e) (f) 0.4; (g) (h) (i) 0.7.
Fig. 12. Schmid factors histogram of α phase with Basal < a>, Prismatic < a> and Pyramidal < a> slip systems for Ti65 alloy deformed at 1080 ℃ and 0.1 s-1 with different true strain: (a) 0.04; (b) 0.4; (c) 0.7.
Fig. 14. Grain boundary contrast maps with true strain (a) 0.04, (b) 0.4, (c) 0.7 and recrystallized maps with true strain (e) 0.4, (f) 0.7 for Ti65 alloy deformed at 1080 ℃and 0.1 s-1 and (d) statistical diagram of misorientation angle.
Fig. 15. (a) (b) TEM images of Ti65 alloy deformed at 960 ℃ (0.1 s-1) with 0.7 strain and (c) corresponding EDS results of silicide in (b). (d) (e) TEM images deformed at 1080 ℃ (0.1 s-1) with 0.7 strain and (f) the SAED pattern of FCC twins highlighted in (e). The SAED patterns corresponding to the TEM images are embedded in the picture respectively.
Fig. 17. (a) and (b) Plots of ln(strain rate ε˙) vs. lnsinhασ for various deformation temperatures and (c) (d) 1/T vs. lnsinhασ for various strain rates.
Fig. 18. FCC twins in Ti65 alloy deformed in the β phase field: (a) DF TEM image and its corresponding magnified BF TEM image is inset; (b) HRTEM image of FCC twins; (c) Fast Fourier-filtered (FFT) pattern and (d) Inverse fast Fourier-filtered (IFFT) image transformed from red frame in (b).
Alloy | Generating condition | Lattice parameter a(nm) |
---|---|---|
CP-Ti [ | Cryogenic channel-die compression | 0.4302 |
Ti-6Al-4 V [ | High energy shot peening | 0.4158 |
Ti-20Zr-6.5Al-4 V [ | Solution treatment at 950℃ | 0.4385 |
Ti65 | Compression in the β phase region | 0.4321 |
Table 2 FCC phase in different titanium alloys.
Alloy | Generating condition | Lattice parameter a(nm) |
---|---|---|
CP-Ti [ | Cryogenic channel-die compression | 0.4302 |
Ti-6Al-4 V [ | High energy shot peening | 0.4158 |
Ti-20Zr-6.5Al-4 V [ | Solution treatment at 950℃ | 0.4385 |
Ti65 | Compression in the β phase region | 0.4321 |
[1] | Christoph Leyens, Manfred Peters, Darmstadt, 2004, pp. 23-25. |
[2] | J. Matthew, Titanium: A Technical Guide, 2000, pp. 18. |
[3] | R.W. Evans, R.J. Hull, B. Wilshire, J. Mater. Process. Technol. 56 (1-4) (1996) 492-501. |
[4] | Shouyong Wei, Wei-min Shi, Ding-chun Wang, Chin. J. Nonferrous Met. 20(S1) (2010) 801-806. |
[5] | I. Weiss, S. Semiatin, Mater. Sci. Eng. A 263 (2) (1999) 243-256. |
[6] | Q.J. Wang, J.R. Liu, R. Yang, J. Aeronaut. Mater. 34 (4) (2014) 1-26. |
[7] | J.Q. Qi, Y. Chang, Y.Z. He, Mater. Des. 99 (2016) 421-426. |
[8] | Wei Shouyong, Shi Weimin, Guo Jialin, J. Chin. J. Nonferrous Met. 23 (1) (2013) 121-124. |
[9] | H. Kestler, H. Muahrabi, H. Remner, Titanium Sci. Technol. (1995) 1171-1178. |
[10] | Michael Y. Mendoza, Peyman Samimi, David A. Brice, et al., Metall. Mater. Trans. A (48A) (2017) 3594-3605. |
[11] |
W.J. Zhanga, X.V. Songa, sx. Hui, et al., Mater. Sci. Eng. A 595 (2014) 159-164.
DOI URL |
[12] |
R.W. Evans, R.J. Hull, B. Wilshire, J. Mater. Process. Technol. 56 (1996) 492-501.
DOI URL |
[13] | Wenwen Peng, Weidong Zeng, Qingjiang Wang, et al., Mater. Sci. Eng. A571 (2013) 116-122. |
[14] |
Feng Sun, Jinshan Li, Hongchao Kou, Mater. Sci. Eng. A 626 (2015) 247-253.
DOI URL |
[15] |
Min Zhou, Mater. Sci. Eng. A 245 (1998) 29-38.
DOI URL |
[16] | Wenwen Peng, Weidong Zeng, Qingjiang Wang, Mater. Des. 51 (2013) 95-104. |
[17] | Wenwen Peng, Weidong Zeng, Qingjiang Wang, Mater. Sci. Eng. A 593 (2014) 16-23. |
[18] |
Guohua Zhao, Xin Xu, David Dye, et al., Acta Mater. 183 (2020) 155-164.
DOI URL |
[19] | Yan Chong, Guanyu Deng, Jangho Yi, et al., J. Alloys. Compd. 811 (2019), 152040. |
[20] | P. Ahmadian, S.M. Abbasi, M. Morakabati, Mater. Today Commun. 13 (2017) 332-345. |
[21] |
K.V. Sai Srinadh, Nidhi Singh, V Singh, Bull. Mater. Sci. 30 (2007) 595-600.
DOI URL |
[22] |
Jingyuan Shen, Yu Sun, Yongquan Ning, et al., Mater. Charact. 153 (2019) 304-317.
DOI URL |
[23] |
Wang Ke, Miaoquan Li, Qing Liua, Mater. Charact. 120 (2016) 115-123.
DOI URL |
[24] | Z.B. Zhao, Q.J. Wang, J.R. Liu, et al., Metallurg. Mater. Trans. A (2018) 1-10. |
[25] | Wenyuan Li, Zhiyong Chen, Jianrong Liu, et al., Mater. Sci. Eng. A 688 (2017) 322-329. |
[26] | Sun Feng, Li Jinshan, Kou Hongchao, et al., Rare Met. Mater. Eng. 44 (4) (2015) 0848-0853. |
[27] | O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC Press Taylor, New York, 2009, pp. 21-27. |
[28] |
Y.N. Wang, J.C. Huang, Mater. Chem. Phys. 81 (2003) 11-26.
DOI URL |
[29] | Richard W. Hertzberg, Richard P. Vinci, Jason L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, WILEY-VCH Verlag GmbH & Co, KGaA, 1995, pp. 7-8. |
[30] | M.G. Jiang, C. Xu, H. Yan, et al., Acta Mater. 157 (2018) 53-71. |
[31] | Eralp Demir, Dierk Raabe, Nader Zaafarani, et al., Acta Mater. 57 (2009) 559-569. |
[32] | S. Birosca, F. Di Gioacchino, S. Stekovic, et al., Acta Mater. 74 (2014) 110-124. |
[33] |
Ehsan Farabi a, Peter D.Hodgson a, Gregory S. Rohrer, Acta Mater. 154 (2018) 147-160.
DOI URL |
[34] |
Jiangkun Fan, Jinshan Li, Yudong Zhang, et al. Adv. Eng. Mater. 19 (2017).
DOI URL PMID |
[35] |
Hongwei Li, Xinxin Sun, He Yang, Int. J. Plast. 87 (2016) 154-180.
DOI URL |
[36] |
Shibayan Roy, Satyam Suwas, Scr. Mater. 154 (2018) 1-7.
DOI URL |
[37] |
E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, et al., J. Alloys. Compd. 695 (2017) 1706-1718.
DOI URL |
[38] |
C.K. Yan, A.H. Feng, S.J. Qu, et al., Acta Mater. 154 (2018) 311-324.
DOI URL |
[39] | Shibayan Roy, Satyam Suwas, Acta Mater. 134 (2017) 283-301. |
[40] | Hossein Beladi, Qi Chao S. Gregory, Acta Mater. 80 (2014), 478-48. |
[41] | Binguo Fu, Hongwei Wang, Chunming Zou, et al., Mater. Charact. 99 (2015) 17-24. |
[42] |
H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322 (2002) 43-63.
DOI URL |
[43] | K. Wang, M.Q. Li, Mater. Sci. Eng. A 600 (2014) 122-128. |
[44] | P. Wanjara, M. Jahazi, H. Monajati, S. Yue, J.-P. Immarigeon, Mater. Sci. Eng. A 396 (2005) 50-60. |
[45] | F. Warchomickaa, C. Poletti, Mater. Sci. Eng. A 528 (2011) 8277-8285. |
[46] | D.H. Hong, T.W. Lee, S.H. Lim, et al., Scr. Mater. 69 (2013) 405-408. |
[47] | Y.G. Liu, M.Q. Li, H.J. Liu, Scr. Mater. 119 (2016) 5-8. |
[48] | R. Jing, C.Y. Liu, M.Z. Ma, J. Alloys. Compd. 552 (2013) 202-207. |
[1] | Bo Song, Zhiwen Du, Ning Guo, Qingshan Yang, Fang Wang, Shengfeng Guo, Renlong Xin. Effect of free-end torsion on microstructure and mechanical properties of AZ31 bars with square section [J]. J. Mater. Sci. Technol., 2021, 69(0): 20-31. |
[2] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[3] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[4] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[5] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[6] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[7] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[8] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[9] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[10] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[11] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[12] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[13] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[14] | Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 162-171. |
[15] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||