Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 56-69    DOI: 10.1016/j.jmst.2020.02.026
Research Article Current Issue | Archive | Adv Search |
Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65
Zhixin Zhanga,c, Jiangkun Fana,b,*(), Bin Tanga,b, Hongchao Koua,b, Jian Wangc, Xin Wangc, Shiying Wangd, Qingjiang Wange, Zhiyong Chene, Jinshan Lia,b,*()
a State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
b National & Local Joint Engineering Research Center for Precision Thermoforming Technology of Advanced Metal Materials, Xi’an, Shaanxi, 710072, China
c Baoti Group Ltd., Baoji, Shaanxi, 721014, China
d School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
e Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
Download:  HTML  PDF(11202KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although the development of titanium alloys with working temperatures above 600 ℃ faces enormous difficulties and challenges, the related research has not stopped. In the present work, detailed analyses on microstructure evolution and hot deformation behavior of a new temperature resistant 650 ℃ titanium alloy Ti65 were investigated from micrometer scale to nanometer scale. The results revealed that lamellar α grains gradually fragmentized and spheroidized during the α + β phase region compression and the orientation of the c-axis of α grains gradually aligned to radial directions, forming two high Schmid factors (SFs) value texture eventually with the increase of strain to 0.7. Moreover, there were some strengthening characters in the α + β phase region such as lenticular αs and nano silicide (TiZr)6Si3. In the β phase region, fine equiaxed dynamic recrystallized (DRX) β grains were formed. Besides, the variant selection of α′ martensite followed Burgers orientation relationship during the compression process. The main deformation mechanisms of the α + β phase region were dislocation slip and orientation dependent spheroidization. Whereas, the deformation process in the β phase region was controlled by β grain DRX. Interestingly, many nano scale FCC twins were generated at the interface of α′ lath during deforming in the β phase region, which was firstly observed in Ti65 alloy.

Key words:  High temperature titanium alloy      Hot deformation      Microstructure evolution      Texture      FCC twin     
Received:  18 November 2019     
Corresponding Authors:  Jiangkun Fan,Jinshan Li     E-mail:  jkfan@nwpu.edu.cn;ljsh@nwpu.edu.cn

Cite this article: 

Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65. J. Mater. Sci. Technol., 2020, 49(0): 56-69.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.026     OR     https://www.jmst.org/EN/Y2020/V49/I0/56

Fig. 1.  (a) Initial microstructure, (b) EBSD map (IPF) and (c) three dimensional ODF map of Ti65 alloy.
Fig. 2.  (a) The heating and deformation schedule for thermal compression process and (b) schematic representation of compression direction.
Fig. 3.  (a) Flow stress-strain curve with the corresponding microstructure of Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain: (b) 0.04; (c) 0.4; (d) 0.7.
Fig. 4.  EBSD inverse pole figures (IPF) and the corresponding pole figures (PF) of Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different strain: (a) (b) 0.04; (c) (d) 0.4; (e) (f) 0.7.
Fig. 5.  Three dimensional ODF (Euler space) and constant φ2 = 0°/30° ODF maps of Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain: (a) (b) (c) 0.04; (d) (e) (f) 0.4; (g) (h) (i) 0.7.
Fig. 6.  Schmid factors (SF) histogram of α phase with Basal < a>, Prismatic < a> and Pyramidal < a> slip systems for Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain: (a) 0.04; (b) 0.4; (c) 0.7.
Slip system Texture component
($\bar{1}$2$\bar{1}$5)[1$\bar{2}$11] ($\bar{1}$2$\bar{1}$2)[4$\bar{5}$16] (02$\bar{2}$3)[0$\bar{1}$11]
Basal < a> (0001)[11$\bar{2}$0] 0 0.13 0.04
Prismatic < a> (1$\bar{1}$00)[11$\bar{2}$0] 0.5 0.47 0.35
Pyramidal < a> (1$\bar{1}$01)[11$\bar{2}$0] 0.40 0.31 0.26
Table 1  SFs of Basal, Prismatic and Pyramidal slip systems for different texture components formed at 0.4 and 0.6 strain.
Fig. 7.  KAM maps of Ti65 alloy deformed at 960℃and 0.1 s-1 with different true strain (a) 0.04, (b) 0.4, (c) 0.7 and (d) KAM histogram.
Fig. 8.  Grain boundary contrast maps for Ti65 alloy deformed at 960 ℃ and 0.1 s-1 with different true strain (a) 0.04, (b) 0.4, (c) 0.7 and (d) statistical diagram of misorientation angle, (e) the α grain size histogram. The high-angle boundaries (HABs) with misorientation over 15 deg and the low-angle boundaries (LABs) with misorientation at 2 to 15 deg are depicted as black lines and red lines, respectively.
Fig. 9.  (a) Flow stress-strain curve with the corresponding microstructure of Ti65 alloy deformed at 1080 ℃ and 0.1 s-1 with different true strain: (b) 0.04; (c) 0.4; (d) 0.7.
Fig. 10.  IPF and the corresponding PF of Ti65 alloy deformed at 1080℃ and 0.1s-1 with different true strain: (a) (b) 0.04; (c) (d) 0.4; (e) (f) 0.7.
Fig. 11.  Three dimensional ODF (Euler space) and constant φ2 = 0°/30° ODF maps of Ti65 alloy deformed at 1080 ℃ and 0.1 s-1 with different true strain: (a) (b) (c) 0.04; (d) (e) (f) 0.4; (g) (h) (i) 0.7.
Fig. 12.  Schmid factors histogram of α phase with Basal < a>, Prismatic < a> and Pyramidal < a> slip systems for Ti65 alloy deformed at 1080 ℃ and 0.1 s-1 with different true strain: (a) 0.04; (b) 0.4; (c) 0.7.
Fig. 13.  KAM maps for Ti65 alloy deformed at 1080 ℃ with different true strain (a) 0.04, (b) 0.4, (c) 0.7 and (d) KAM histogram.
Fig. 14.  Grain boundary contrast maps with true strain (a) 0.04, (b) 0.4, (c) 0.7 and recrystallized maps with true strain (e) 0.4, (f) 0.7 for Ti65 alloy deformed at 1080 ℃and 0.1 s-1 and (d) statistical diagram of misorientation angle.
Fig. 15.  (a) (b) TEM images of Ti65 alloy deformed at 960 ℃ (0.1 s-1) with 0.7 strain and (c) corresponding EDS results of silicide in (b). (d) (e) TEM images deformed at 1080 ℃ (0.1 s-1) with 0.7 strain and (f) the SAED pattern of FCC twins highlighted in (e). The SAED patterns corresponding to the TEM images are embedded in the picture respectively.
Fig. 16.  The schematic diagram of the precipitation process during the hot deformation of Ti65 alloy.
Fig. 17.  (a) and (b) Plots of ln(strain rate ε˙) vs. lnsinhασ for various deformation temperatures and (c) (d) 1/T vs. lnsinhασ for various strain rates.
Fig. 18.  FCC twins in Ti65 alloy deformed in the β phase field: (a) DF TEM image and its corresponding magnified BF TEM image is inset; (b) HRTEM image of FCC twins; (c) Fast Fourier-filtered (FFT) pattern and (d) Inverse fast Fourier-filtered (IFFT) image transformed from red frame in (b).
Alloy Generating condition Lattice parameter a(nm)
CP-Ti [46] Cryogenic channel-die compression 0.4302
Ti-6Al-4 V [47] High energy shot peening 0.4158
Ti-20Zr-6.5Al-4 V [48] Solution treatment at 950℃ 0.4385
Ti65 Compression in the β phase region 0.4321
Table 2  FCC phase in different titanium alloys.
[1] Christoph Leyens, Manfred Peters, Darmstadt, 2004, pp. 23-25.
[2] J. Matthew, Titanium: A Technical Guide, 2000, pp. 18.
[3] R.W. Evans, R.J. Hull, B. Wilshire, J. Mater. Process. Technol. 56 (1-4) (1996) 492-501.
[4] Shouyong Wei, Wei-min Shi, Ding-chun Wang, Chin. J. Nonferrous Met. 20(S1) (2010) 801-806.
[5] I. Weiss, S. Semiatin, Mater. Sci. Eng. A 263 (2) (1999) 243-256.
[6] Q.J. Wang, J.R. Liu, R. Yang, J. Aeronaut. Mater. 34 (4) (2014) 1-26.
[7] J.Q. Qi, Y. Chang, Y.Z. He, Mater. Des. 99 (2016) 421-426.
[8] Wei Shouyong, Shi Weimin, Guo Jialin, J. Chin. J. Nonferrous Met. 23 (1) (2013) 121-124.
[9] H. Kestler, H. Muahrabi, H. Remner, Titanium Sci. Technol. (1995) 1171-1178.
[10] Michael Y. Mendoza, Peyman Samimi, David A. Brice, et al., Metall. Mater. Trans. A (48A) (2017) 3594-3605.
[11] W.J. Zhanga, X.V. Songa, sx. Hui, et al., Mater. Sci. Eng. A 595 (2014) 159-164.
doi: 10.1016/j.msea.2013.11.096
[12] R.W. Evans, R.J. Hull, B. Wilshire, J. Mater. Process. Technol. 56 (1996) 492-501.
doi: 10.1016/0924-0136(96)85109-0
[13] Wenwen Peng, Weidong Zeng, Qingjiang Wang, et al., Mater. Sci. Eng. A571 (2013) 116-122.
[14] Feng Sun, Jinshan Li, Hongchao Kou, Mater. Sci. Eng. A 626 (2015) 247-253.
doi: 10.1016/j.msea.2014.12.031
[15] Min Zhou, Mater. Sci. Eng. A 245 (1998) 29-38.
doi: 10.1016/S0921-5093(97)00707-7
[16] Wenwen Peng, Weidong Zeng, Qingjiang Wang, Mater. Des. 51 (2013) 95-104.
[17] Wenwen Peng, Weidong Zeng, Qingjiang Wang, Mater. Sci. Eng. A 593 (2014) 16-23.
[18] Guohua Zhao, Xin Xu, David Dye, et al., Acta Mater. 183 (2020) 155-164.
doi: 10.1016/j.actamat.2019.11.009
[19] Yan Chong, Guanyu Deng, Jangho Yi, et al., J. Alloys. Compd. 811 (2019), 152040.
[20] P. Ahmadian, S.M. Abbasi, M. Morakabati, Mater. Today Commun. 13 (2017) 332-345.
[21] K.V. Sai Srinadh, Nidhi Singh, V Singh, Bull. Mater. Sci. 30 (2007) 595-600.
doi: 10.1007/s12034-007-0094-6
[22] Jingyuan Shen, Yu Sun, Yongquan Ning, et al., Mater. Charact. 153 (2019) 304-317.
doi: 10.1016/j.matchar.2019.05.014
[23] Wang Ke, Miaoquan Li, Qing Liua, Mater. Charact. 120 (2016) 115-123.
doi: 10.1016/j.matchar.2016.08.028
[24] Z.B. Zhao, Q.J. Wang, J.R. Liu, et al., Metallurg. Mater. Trans. A (2018) 1-10.
[25] Wenyuan Li, Zhiyong Chen, Jianrong Liu, et al., Mater. Sci. Eng. A 688 (2017) 322-329.
[26] Sun Feng, Li Jinshan, Kou Hongchao, et al., Rare Met. Mater. Eng. 44 (4) (2015) 0848-0853.
[27] O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC Press Taylor, New York, 2009, pp. 21-27.
[28] Y.N. Wang, J.C. Huang, Mater. Chem. Phys. 81 (2003) 11-26.
doi: 10.1016/S0254-0584(03)00168-8
[29] Richard W. Hertzberg, Richard P. Vinci, Jason L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, WILEY-VCH Verlag GmbH & Co, KGaA, 1995, pp. 7-8.
[30] M.G. Jiang, C. Xu, H. Yan, et al., Acta Mater. 157 (2018) 53-71.
[31] Eralp Demir, Dierk Raabe, Nader Zaafarani, et al., Acta Mater. 57 (2009) 559-569.
[32] S. Birosca, F. Di Gioacchino, S. Stekovic, et al., Acta Mater. 74 (2014) 110-124.
[33] Ehsan Farabi a, Peter D.Hodgson a, Gregory S. Rohrer, Acta Mater. 154 (2018) 147-160.
doi: 10.1016/j.actamat.2018.05.023
[34] Jiangkun Fan, Jinshan Li, Yudong Zhang, et al. Adv. Eng. Mater. 19 (2017).
doi: 10.1002/adem.201600592 pmid: 31555065
[35] Hongwei Li, Xinxin Sun, He Yang, Int. J. Plast. 87 (2016) 154-180.
doi: 10.1016/j.ijplas.2016.09.008
[36] Shibayan Roy, Satyam Suwas, Scr. Mater. 154 (2018) 1-7.
doi: 10.1016/j.scriptamat.2018.05.005
[37] E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, et al., J. Alloys. Compd. 695 (2017) 1706-1718.
doi: 10.1016/j.jallcom.2016.10.322
[38] C.K. Yan, A.H. Feng, S.J. Qu, et al., Acta Mater. 154 (2018) 311-324.
doi: 10.1016/j.actamat.2018.05.057
[39] Shibayan Roy, Satyam Suwas, Acta Mater. 134 (2017) 283-301.
[40] Hossein Beladi, Qi Chao S. Gregory, Acta Mater. 80 (2014), 478-48.
[41] Binguo Fu, Hongwei Wang, Chunming Zou, et al., Mater. Charact. 99 (2015) 17-24.
[42] H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322 (2002) 43-63.
doi: 10.1016/S0921-5093(01)01117-0
[43] K. Wang, M.Q. Li, Mater. Sci. Eng. A 600 (2014) 122-128.
[44] P. Wanjara, M. Jahazi, H. Monajati, S. Yue, J.-P. Immarigeon, Mater. Sci. Eng. A 396 (2005) 50-60.
[45] F. Warchomickaa, C. Poletti, Mater. Sci. Eng. A 528 (2011) 8277-8285.
[46] D.H. Hong, T.W. Lee, S.H. Lim, et al., Scr. Mater. 69 (2013) 405-408.
[47] Y.G. Liu, M.Q. Li, H.J. Liu, Scr. Mater. 119 (2016) 5-8.
[48] R. Jing, C.Y. Liu, M.Z. Ma, J. Alloys. Compd. 552 (2013) 202-207.
[1] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[2] Jialin Wu, Li Jin, Jie Dong, Fenghua Wang, Shuai Dong. The texture and its optimization in magnesium alloy[J]. 材料科学与技术, 2020, 42(0): 175-189.
[3] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[4] Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy[J]. 材料科学与技术, 2020, 45(0): 133-145.
[5] Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review[J]. 材料科学与技术, 2020, 39(0): 56-73.
[6] Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 45(0): 207-214.
[7] Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting[J]. 材料科学与技术, 2020, 42(0): 1-9.
[8] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[9] Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy[J]. 材料科学与技术, 2020, 43(0): 104-118.
[10] Yingdong Zhang, Fusen Yuan, Fuzhou Han, Muhammad Ali, Wenbin Guo, Geping Li, Chengze Liu, Hengfei Gu. The influence of microtexture on the formation mechanism of nodules in Zircaloy-4 alloy tube[J]. 材料科学与技术, 2020, 47(0): 68-75.
[11] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[12] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[13] Mengcheng Zhou, Xinfang Zhang. Optimization of <001> grain gene based on texture hereditary behavior of magnetic materials[J]. 材料科学与技术, 2020, 38(0): 1-6.
[14] Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method[J]. 材料科学与技术, 2020, 38(0): 125-134.
[15] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.