Please wait a minute...
J. Mater. Sci. Technol.  2016, Vol. 32 Issue (10): 1054-1058    DOI: 10.1016/j.jmst.2016.07.005
Orginal Article Current Issue | Archive | Adv Search |
Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al
Li R.T.1,K. Murugan Vinod2,Dong Z.L.2,*(),Khor K.A.1()
1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
2 School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Cr-Fe alloy containing quasicrystals has been consolidated using spark plasma sintering (SPS). Its corrosion resistance properties were comparatively investigated with pure Al by electrochemical methods in 3.5 wt% NaCl solution. Their corrosion current density was also compared with that of three commercial steels—316 stainless steel, AISI 440C stainless steel and AISI H13 tool steel. Al-Cr-Fe alloy exhibits nobler corrosion potential and evident passivation with a potential range of around 150 mV while no passivation of pure Al sample is seen. The corrosion resistance of Al-Cr-Fe alloy is less than that of pure Al, but is close to that of 316 stainless steel and superior to that of AISI 440C stainless steel and AISI H13 tool steel.

Key words:  Quasicrystal      Spark plasma sintering      Microstructure      Corrosion resistance     
Received:  10 April 2016     
Corresponding Authors:  Dong Z.L.     E-mail:  ZLDONG@ntu.edu.sg;MKAKHOR@ntu.edu.sg

Cite this article: 

Li R.T.,K. Murugan Vinod,Dong Z.L.,Khor K.A.. Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al. J. Mater. Sci. Technol., 2016, 32(10): 1054-1058.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2016.07.005     OR     https://www.jmst.org/EN/Y2016/V32/I10/1054

Element Si Fe Total impurity Al
Content <0.015 <0.015 <0.03 >99.97
Table 1  Composition of commercially pure Al pellet
Fig. 1.  Morphology of as-received Al-Cr-Fe powders.
Fig. 2.  Microstructure of the sintered Al-Cr-Fe pellet: (a) SEM BSE image, (b) STEM image.
Fig. 3.  OCP for pure Al and Al-Cr-Fe in 3.5 wt% NaCl solution.
Fig. 4.  Complex plane plots of the EIS for pure Al and Al-Cr-Fe (symbols indicate experimental results and solid lines approximated data obtained using the double-CPE model).
Fig. 5.  Equivalent circuit for EIS data fitting (Rsol, Rp, Rc are the bulk solution, pore and charge-transfer resistance, respectively. Cfil and Cd are constant phase elements. W10 is Warburg impedance).
Sample Rsol
(Ω ? cm2)
Rp
(Ω ? cm2)
Rc
(Ω ? cm2)
Cfil
-2 ? cm2 ? s-m)
m Cd
-2 ? cm2 ? s-n)
n W10
(Ω ? cm2 ? s-0.5)
Pure Al 2.40 2.58 × 104 1.3 × 106 8.99 × 10-6 0.93 1.45 × 10-4 0.78 5059
Al-Cr-Fe 11.95 3.55 × 104 8.4 × 104 2.35 × 10-5 0.95 4.34 × 10-4 0.92 4933
Table 2  EIS data obtained by equivalent electrical circuit models
Fig. 6.  Potentiodynamic polarization curves of pure Al and Al-Cr-Fe.
Sample βa
(mV/decade)
βc
(mV/decade)
Ecorr
(mV)
Icorr
(μA ? cm-2)
Source
Pure Al 680 151 -1040 0.32 This study
Al-Cr-Fe 118 158 -938 1.77 This study
316 Stainless steel - - -208 1.7 Li and Bell[27]
AISI 440C stainless steel - - -485 15.0 Lo et al.[28]
AISI H13 tool steel 48.3 676 -440 15.53 Yoo et al.[29]
Table 3  Data obtained from the potentiodynamic polarization curves of pure Al and Al-Cr-Fe
[1] J.-M. Dubois. Mater. Sci. Eng. A, 294(2000), pp. 4-9
[2] S. Kang, J.-M. Dubois, J. von Stebut. J. Mater. Res, 8(1993), pp. 2471-2481
[3] J.-M. Dubois, S.S. Kang, J. Stebut. J. Mater. Sci. Lett, 10(1991), pp. 537-541
[4] J.-M. Dubois, S.S. Kang, A. Perrot. Mater. Sci. Eng. A, 179(1994), pp. 122-126
[5] Z. Wang, W. Zhao, H. Li, J. Ding, Y.Y. Li, C.Y. Liang. J. Mater. Sci. Technol, 26(2010), pp. 27-32
[6] M. Yoshimura, A. Tsai. J. Alloys Compd, 342(2002), pp. 451-454
[7] T. Tanabe, S. Kameoka, A.P. Tsai. J. Mater. Sci, 46(2011), pp. 2242-2250
[8] R. Stroud, A. Viano, P. Gibbons, K. Kelton, S. Misture. Appl. Phys. Lett, 69(1996), pp. 2998-3000
[9] S.M. Lee, J.H. Jung, E. Fleury, W.T. Kim, D.H. Kim.Mater. Sci. Eng.A, 294-296(2000), pp. 99-103
[10] S. Kaloshkin, V. Tcherdyntsev, A. Laptev, A. Stepashkin, E. Afonina, A. Pomadchik, V. Bugakov. J. Mater. Sci, 39(2004), pp. 5399-5402
[11] M. Zhu, G. Yang, L. Yao, S. Cheng, Y. Zhou. J. Mater. Sci, 45(2010), pp. 3727-3734
[12] G. Shao, V. Varsani, Y. Wang, M. Qian, Z. Fan.Intermetallics, 14(2006), pp. 596-602
[13] E. Huttunen-Saarivirta.J. Alloys Compd, 363(2004), pp. 154-178
[14] E. Huttunen-Saarivirta, E. Turunen, M. Kallio.Intermetallics, 11(2003), pp. 879-891
[15] Z.M. Stadnik.Physical Properties of Quasicrystals Springer Science & Business Media (2012), pp. 362-363
[16] S. Lee, J. Jung, E. Fleury, W. Kim, D. Kim. Mater. Sci. Eng. A, 294(2000), pp. 99-103
[17] K.A. Khor, K.H. Cheng, L.G. Yu, F. Boey. Mater. Sci. Eng. A, 347(2003), pp. 300-305
[18] V. Mamedov.Powder Metall, 45(2002), pp. 322-328
[19] X. Li, C. Liu, K. Luo, M. Ma, R. Liu. J. Mater. Sci. Technol, 32(2016), pp. 291-297
[20] S. Bathula, M. Saravanan, A. Dhar. J.Mater. Sci. Technol, 28(2012), pp. 969-975
[21] R. Li, Z. Dong, V. Murugan, Z. Zhang, K. Khor. Mater. Charact, 110(2015), pp. 264-271
[22] G. Walter. Corros. Sci, 32(1991), pp. 1041-1058
[23] T. Hong, Y. Sun, W. Jepson. Corros. Sci, 44(2002), pp. 101-112
[24] K. Hladky, L. Callow, J. Dawson. Brit.Corros. J., 15(1980), pp. 20-25
[25] Y. Massiani, S. Ait Yaazza, J. Crousier, J. Dubois. J.Non Cryst. Solids, 159(1993), pp. 92-100
[26] J. Creus, A. Billard, F. Sanchette.Thin Solid Films, 466(2004), pp. 1-9
[27] C. Li, T. Bell. Corros. Sci, 46(2004), pp. 1527-1547
[28] K. Lo, F. Cheng, C. Kwok, H. Man. Mater. Lett, 58(2004), pp. 88-93
[29] Y.H. Yoo, D.P. Le, J.G. Kim, S.K. Kim, P. van Vinh. Thin Solid Films, 516(2008), pp. 3544-3548
[30] F. Latief, E.-S.M. Sherif, A. Almajid, H. Junaedi. J. Anal. Appl. Pyrolysis, 92(2011), pp. 485-492
[31] K. Funatani, M. Yoshida, Y. Tsunekawa. G.E. Totten, D.S. MacKenzie (Eds.), Handbook of Aluminum, Marcel Dekker, New York (2003), pp. 459-460
[32] J.E. Hatch.Aluminum: Properties and Physical Metallurgy, ASM International, Ohio(1984), pp. 279-281.
[33] A. Ahmad, Z. Yahya, N. Daud, M. Daud, in: Proceedings to ICEE 2009 3rd International Conference on Energy and Environment, Malacca, Malaysia, 7-8 December, (2009)
[34] A. Laurino, E. Andrieu, J. Harouard, J. Lacaze, M. Lafont, G. Odemer, C. Blanc. J.Electrochem. Soc, 160(2013), pp. C569-C575
[1] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[2] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[3] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[4] Shaoning Geng, Ping Jiang, Xinyu Shao, Lingyu Guo, Xuesong Gao. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet[J]. 材料科学与技术, 2020, 46(0): 50-63.
[5] Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering[J]. 材料科学与技术, 2020, 41(0): 149-158.
[6] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[7] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[8] Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire[J]. 材料科学与技术, 2020, 45(0): 44-48.
[9] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[10] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[11] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[12] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[13] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
[14] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[15] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.