J. Mater. Sci. Technol. ›› 2021, Vol. 87: 184-195.DOI: 10.1016/j.jmst.2021.01.060
• Research Article • Previous Articles Next Articles
D.D. Zhanga, H. Wangb, J.Y. Zhanga,*(), H. Xuea, G. Liua,*(
), J. Suna
Received:
2021-01-13
Accepted:
2021-01-18
Published:
2021-03-17
Online:
2021-03-17
Contact:
J.Y. Zhang,G. Liu
About author:
lgsammer@mail.xjtu.edu.cn (G. Liu).D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping[J]. J. Mater. Sci. Technol., 2021, 87: 184-195.
Fig. 2. The microstructural features of the annealed A6Ta2 MEA. (a) the OM image, showing fully twinned microstructure and the corresponding XRD pattern, showing randomly oriented grains of the fcc single-phase solid solution; (b) a TEM bright-field image of a twinned grain without dislocations, showing the coherent twin boundary (CTB) of AT (b1) and twinned relationship via the SAED pattern (b2); (c) the STEM/TEM image, showing the CTB and GB as indicated by arrows and confirming the chemical homogeneity of all elements from the EDS maps.
Fig. 3. The recrystallized microstructure of (a) the NiCoCr alloy and (b) the Al6Ta2 MEA, respectively. Insets in (a) and (b) showing their corresponding statistical results of the average grains size (including or excluding TBs).
Fig. 4. Typical deformation microstructures of the NiCoCr MEA strained to fracture. (a) The morphologies of hierarchical SFs and (b) the representative HRTEM images of SF bundles and the corresponding FFT pattern (the inset); (c) The morphologies of DTs and (d) the HRTEM image of DTs and the corresponding IFFT pattern (the inset).
Fig. 5. Typical internal deformation features of Al6Ta2 MEA strained to fracture. (a) Dislocation planar slip characteristics with zone axis of [110]; (b) The morphology of HDDWs; (c) The strain-induced micro-bands with high densities of dislocations; (d) The feature of SFs network and (e) a magnified image of the SFs associated with the IFFT pattern. (f) The feature twin-dislocation interactions showing dislocation transmit across the CTBs and abundant dislocations inside the annealing micro-twin.
Fig. 6. Mechanical response of the Al6Ta2 MEA in comparison with that of NiCoCr MEA recrystallized at 1150 ℃ for 3 min’ (a) representative engineering stress-strain curves of NiCoCr and Al6Ta2 MEAs; (b) The true stress-strain curves vs corresponding strain hardening rates of NiCoCr and Al6Ta2 MEA.
Fig. 7. A comparison of the (a) yield strength and (b) ultimate tensile strength of the present solute-hardened Al6Ta2 MEA at ambient temperate with that of our NiCoCr MEA and the other reported homogenous, solid-solution and fcc HEAs/MEAs.
Fig. 8. Hall-Petch relationships of NiCoCr and Al6Ta2 MEAs. The squares and circles are present experimental data of σy against d for NiCoCr and Al6Ta2 alloys respectively, as well as the corresponding Hall-Petch plots, the triangles are the data of NiCoCr from the literature [32,[74], [75], [76]] and the fitting purple line is a fairly reliable Hall-Petch relationship of NiCoCr alloy based on the aggregated data of circles and triangles.
Elements | Fe | Co | Cr | Ni | Mn | Al | Ta | V |
---|---|---|---|---|---|---|---|---|
Vn (Å3) | 12.09 [ | 11.12 [ | 12.27 [ | 10.94 [ | 12.60 [ | 14.0 [ | 17.35 | 13.91 [ |
G (GPa) | 81 [ | 75 [ | 72 [ | 74 [ | 77 [ | 27 [ | 69 [ | 54 [ |
E (GPa) | 211 [ | 209 [ | 245 [ | 196 [ | 198 [ | 71 [ | 177 [ | 147 [ |
Table 1 The isotropic elastic constants for pure elements at room temperature, and literature data of atomic apparent volumes Vn of each element in fcc HEAs, the value of VTa was deduced from experiments on Ni-Ta binary alloy.
Elements | Fe | Co | Cr | Ni | Mn | Al | Ta | V |
---|---|---|---|---|---|---|---|---|
Vn (Å3) | 12.09 [ | 11.12 [ | 12.27 [ | 10.94 [ | 12.60 [ | 14.0 [ | 17.35 | 13.91 [ |
G (GPa) | 81 [ | 75 [ | 72 [ | 74 [ | 77 [ | 27 [ | 69 [ | 54 [ |
E (GPa) | 211 [ | 209 [ | 245 [ | 196 [ | 198 [ | 71 [ | 177 [ | 147 [ |
b (Å) | G (GPa) | υ | $\underset{n}{\mathop \sum }\,{{\text{c}}_{n}}\text{ }\!\!\Delta\!\!\text{ }V_{n}^{2}$(Å6) | ΔEb (eV) | σ0(th) (MPa) | σ0(exp) (MPa) | |
---|---|---|---|---|---|---|---|
(NiCoCr)92Al6Ta2 | 2.529 | 83 | 0.34 | 1.21 | 1.80 | 431 | 405 |
(NiCoCr)98Ta2 | 2.537 | 86.8 | 0.34 | 1.02 | 1.72 | 366 | — |
(NiCoCr)94Al6 | 2.532 [ | 82 [ | 0.29 [ | 0.69 | 1.32 | 204 | — |
NiCoCr | 2.517 [ | 87 [ | 0.30 [ | 0.35 | 1.14 | 136 | 135 [ |
NiCoFe | 2.524 [ | 60 [ | 0.35 [ | 0.26 | 0.76 | 57 | 63 [ |
NiFeMn | 2.557 [ | 73 [ | 0.24 [ | 0.48 | 0.98 | 97 | 119 [ |
NiCoV | 2.546 [ | 72 [ | 0.334 [ | 1.71 | 1.69 | 392 | 383 [ |
NiCoFeMn | 2.540 [ | 77 [ | 0.22 [ | 0.47 | 0.99 | 98 | 131 [ |
NiCoCrMn | 2.538 [ | 78 [ | 0.25 [ | 0.51 | 1.08 | 123 | 131 [ |
NiCoCrFe | 2.525 [ | 84 [ | 0.28 [ | 0.34 | 1.05 | 109 | 101 [ |
NiCoCrFeMn | 2.545 [ | 80 [ | 0.26 [ | 0.43 | 1.06 | 112 | 125 [ |
Table 2 Material parameters at room temperature adopted in the SSH model and the predicted lattice friction stress σ0(th) for (NiCoCr)92Al6Ta2, (NiCoCr)98Ta2, (NiCoCr)94Al6, as well as various fcc HEAs/MEAs. The σ0(exp) extracted by deduced finite grain sizes polycrystalline data to infinite grain sizes.
b (Å) | G (GPa) | υ | $\underset{n}{\mathop \sum }\,{{\text{c}}_{n}}\text{ }\!\!\Delta\!\!\text{ }V_{n}^{2}$(Å6) | ΔEb (eV) | σ0(th) (MPa) | σ0(exp) (MPa) | |
---|---|---|---|---|---|---|---|
(NiCoCr)92Al6Ta2 | 2.529 | 83 | 0.34 | 1.21 | 1.80 | 431 | 405 |
(NiCoCr)98Ta2 | 2.537 | 86.8 | 0.34 | 1.02 | 1.72 | 366 | — |
(NiCoCr)94Al6 | 2.532 [ | 82 [ | 0.29 [ | 0.69 | 1.32 | 204 | — |
NiCoCr | 2.517 [ | 87 [ | 0.30 [ | 0.35 | 1.14 | 136 | 135 [ |
NiCoFe | 2.524 [ | 60 [ | 0.35 [ | 0.26 | 0.76 | 57 | 63 [ |
NiFeMn | 2.557 [ | 73 [ | 0.24 [ | 0.48 | 0.98 | 97 | 119 [ |
NiCoV | 2.546 [ | 72 [ | 0.334 [ | 1.71 | 1.69 | 392 | 383 [ |
NiCoFeMn | 2.540 [ | 77 [ | 0.22 [ | 0.47 | 0.99 | 98 | 131 [ |
NiCoCrMn | 2.538 [ | 78 [ | 0.25 [ | 0.51 | 1.08 | 123 | 131 [ |
NiCoCrFe | 2.525 [ | 84 [ | 0.28 [ | 0.34 | 1.05 | 109 | 101 [ |
NiCoCrFeMn | 2.545 [ | 80 [ | 0.26 [ | 0.43 | 1.06 | 112 | 125 [ |
Fig. 9. A comparison of (a) the absolute increment and (b) relative increment in the strength of the present Al6Ta2 MEA with reported (NiCoCr)100-xMx alloys.
Fig. 10. (a) A comparison of the experimental and theoretical results of lattice strength σ0 of the present and reported fcc HEAs/MEAs, and (b) The correlation between lattice friction stress σ0(th) and energy barrier ΔEb, showing the lattice strength increment (or SSH) caused by 6 at.% Al and 2 at.% Ta is about 68 and 230 MPa, respectively.
Fig. 11. The competitive mechanisms for deformation twinning of NiCoCr MEA (a) and Al6Ta2 MEA (b), respectively, showing their corresponding transition size regimes are about 11.7-34.5 μm and 9.5-29.5 μm, based on Eqs. (8) and (9) respectively.
[1] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[2] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[3] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[4] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[5] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[6] |
Y. Han, H. Li, H. Feng, K. Li, Y. Tian, Z. Jiang, J. Mater. Sci. Technol. 65 (2021) 210-215.
DOI |
[7] |
B. Gludovatz, A. Hohenwarter, K. V.S.Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
[8] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[9] |
Y. Fu, J. Li, H. Luo, C. Du, X. Li, J. Mater. Sci. Technol. 80 (2021) 217-233.
DOI URL |
[10] |
Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35 (2019) 369-373.
DOI URL |
[11] |
C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M. He, I.M. Robertson, W.J. Weber, L. Wang, Nat. Commun. 7 (2016) 13564.
DOI URL |
[12] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[13] |
J. Wang, S. Wu, S. Fu, S. Liu, Z. Ren, M. Yan, S. Chen, S. Lan, H. Hahn, T. Feng, J. Mater. Sci. Technol. 77 (2021) 126-130.
DOI URL |
[14] |
A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao, J. Mater. Sci. Technol. 39 (2020) 1-6.
DOI |
[15] |
Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang, J. Mater. Sci. Technol. 35 (2019) 334-340.
DOI |
[16] |
T.W. Zhang, S.G. Ma, D. Zhao, Y.C. Wu, Y. Zhang, Z.H. Wang, J.W. Qiao, Int. J. Plasticity 124 (2020) 226-246.
DOI URL |
[17] |
H.H. Chen, Y.F. Zhao, J.Y. Zhang, Y.Q. Wang, G.Y. Li, K. Wu, G. Liu, J. Sun, Int. J. Plasticity 133 (2020) 102839.
DOI URL |
[18] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[19] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[20] |
S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics 93 (2018) 269-273.
DOI URL |
[21] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[22] |
Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X. Liu, H. Wang, S. Jiang, Z. Lu, J. Mater. Sci. Technol. 62 (2021) 214-220.
DOI |
[23] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132 (2017) 35-48.
DOI URL |
[24] |
Q. Ding, X. Fu, D. Chen, H. Bei, B. Gludovatz, J. Li, Z. Zhang, E.P. George, Q. Yu, T. Zhu, R.O. Ritchie, Mater. Today 25 (2019) 21-27.
DOI URL |
[25] |
K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352.
DOI PMID |
[26] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater. 165 (2019) 496-507.
DOI |
[27] |
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scripta Mater. 134 (2017) 33-36.
DOI URL |
[28] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater. 138 (2017) 72-82.
DOI URL |
[29] |
C.R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, Mater. Charact. 151 (2019) 310-317.
DOI URL |
[30] |
Z. An, S. Mao, Y. Liu, L. Wang, H. Zhou, B. Gan, Z. Zhang, X. Han, J. Mater. Sci. Technol. 79 (2021) 109-117.
DOI URL |
[31] |
Y. Chen, Y. Fang, X. Fu, Y. Lu, S. Chen, H. Bei, Q. Yu, J. Mater. Sci. Technol. 73 (2021) 101-107.
DOI URL |
[32] |
M.P. Agustianingrum, S. Yoshida, N. Tsuji, N. Park, J. Alloys Compd. 781 (2019) 866-872.
DOI URL |
[33] | G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George, J. Mater. Sci. Technol. (2020). |
[34] |
R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, J. Alloys Compd. 790 (2019) 732-743.
DOI URL |
[35] |
X.W. Liu, G. Laplanche, A. Kostka, S.G. Fries, J. Pfetzing-Micklich, G. Liu, E.P. George, J. Alloys Compd. 775 (2019) 1068-1076.
DOI URL |
[36] |
C.E. Slone, C. R.LaRosa, C.H. Zenk, E.P. George, M. Ghazisaeidi, M.J. Mills, Scripta Mater. 178 (2020) 295-300.
DOI URL |
[37] |
C. Varvenne, G. P.M.Leyson, M. Ghazisaeidi, W.A. Curtin, Acta Mater. 124 (2017) 660-683.
DOI URL |
[38] |
R.L. Fleischer, Acta Metall. 11 (1963) 203-209.
DOI URL |
[39] |
I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 85 (2015) 14-23.
DOI URL |
[40] |
M. Walbrühl, D. Linder, J. Ågren, A. Borgenstam, Mater. Sci. Eng.: A 700 (2017) 301-311.
DOI URL |
[41] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118 (2016) 164-176.
DOI URL |
[42] |
C. Varvenne, W.A. Curtin, Scripta Mater. 142 (2018) 92-95.
DOI URL |
[43] |
C. Varvenne, W.A. Curtin, Scripta Mater. 138 (2017) 92-95.
DOI URL |
[44] |
B. Yin, F. Maresca, W.A. Curtin, Acta Mater. 188 (2020) 486-491.
DOI URL |
[45] |
D. Wen, C. Chang, S. Matsunaga, G. Park, L. Ecker, S.K. Gill, M. Topsakal, M.A. Okuniewski, S. Antonov, D.R. Johnson, M.S. Titus, Materialia 9 (2020) 100539.
DOI URL |
[46] | S. GUO, C.T. LIU, Prog. Nat. Sci-Mater. 21 (2011) 433-446. |
[47] |
L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, Z. Li, Mater. Design 61 (2014) 61-69.
DOI URL |
[48] |
S. Gao, B. He, L. Zhou, J. Hou, Corros. Sci. 170 (2020) 108682.
DOI URL |
[49] |
X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, J. Li, K. Wu, G. Liu, J. Sun, Scripta Mater. 139 (2017) 71-76.
DOI URL |
[50] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62 (2014) 105-113.
DOI URL |
[51] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505.
DOI URL |
[52] |
R.A. Varin, J. Kruszynska, Acta Metall. 35 (1987) 1767-1774.
DOI URL |
[53] |
L. Guo, J. Gu, X. Gong, S. Ni, M. Song, Sci. China Mater. 63 (2020) 288-299.
DOI URL |
[54] |
Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Scripta Mater. 148 (2018) 51-55.
DOI URL |
[55] |
P. Sathiyamoorthi, J.M. Park, J. Moon, J.W. Bae, P. Asghari-Rad, A. Zargaran, H. Seop Kim, Materialia 8 (2019) 100442.
DOI URL |
[56] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
[57] |
P. Asghari-Rad, P. Sathiyamoorthi, N. Thi-Cam Nguyen, J.W. Bae, H. Shahmir, H.S. Kim, Mater. Sci. Eng.: A 771 (2020) 138604.
DOI URL |
[58] |
Y.H. Jo, D.G. Kim, M.C. Jo, K.Y. Doh, S.S. Sohn, D. Lee, H.S. Kim, B.J. Lee, S. Lee, J. Alloys Compd. 785 (2019) 1056-1067.
DOI URL |
[59] |
D. Wei, X. Li, W. Heng, Y. Koizumi, F. He, W. Choi, B. Lee, H.S. Kim, H. Kato, A. Chiba, Mater. Res. Lett. 7 (2019) 82-88.
DOI URL |
[60] |
D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W. Choi, B. Lee, H.S. Kim, H. Kato, A. Chiba, Scripta Mater. 165 (2019) 39-43.
DOI URL |
[61] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[62] | S.S. Sohn, D.S.A. Kwiatkowski, Y. Ikeda, F. Kormann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31 (2019) e1807142. |
[63] |
H.W. Deng, Z.M. Xie, B.L. Zhao, Y.K. Wang, M.M. Wang, J.F. Yang, T. Zhang, Y. Xiong, X.P. Wang, Q.F. Fang, C.S. Liu, Mater. Sci. Eng.: A 744 (2019) 241-246.
DOI URL |
[64] |
Y. Xie, Y. Luo, T. Xia, W. Zeng, J. Wang, J. Liang, D. Zhou, D. Zhang, J. Alloys Compd. 819 (2020) 152937.
DOI URL |
[65] |
H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng.: A 676 (2016) 294-303.
DOI URL |
[66] |
X.D. Xu, P. Liu, A. Hirata, S.X. Song, T.G. Nieh, M.W. Chen, Materialia 4 (2018) 395-405.
DOI URL |
[67] |
Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E.J. Lavernia, Acta Mater. 107 (2016) 59-71.
DOI URL |
[68] |
D. Kuhlmann-Wilsdorf, Mater. Sci. Eng.: A 113 (1989) 1-41.
DOI URL |
[69] |
I. Gutiérrez-Urrutia, D. Raabe, Acta Mater. 60 (2012) 5791-5802.
DOI URL |
[70] | B. Yin, S. Yoshida, N. Tsuji, W.A. Curtin, Nat. Commun. 11 (2020). |
[71] |
I. Moravcik, H. Hadraba, L. Li, I. Dlouhy, D. Raabe, Z. Li, Scripta Mater. 178 (2020) 391-397.
DOI URL |
[72] |
M. Schneider, E.P. George, T.J. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Int. J. Plasticity 124 (2020) 155-169.
DOI URL |
[73] |
W. Lu, X. Luo, Y. Yang, B. Huang, Mater. Chem. Phys. 251 (2020) 123073.
DOI URL |
[74] |
M. Schneider, E.P. George, T.J. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Data Brief 27 (2019) 104592.
DOI PMID |
[75] |
F. Thiel, D. Geissler, K. Nielsch, A. Kauffmann, S. Seils, M. Heilmaier, D. Utt, K. Albe, M. Motylenko, D. Rafaja, J. Freudenberger, Acta Mater. 185 (2020) 400-411.
DOI URL |
[76] |
A. Nash, P. Nash, Bull. Alloy Phase Diagr. 5 (1984) 259-265.
DOI URL |
[77] |
Y.Y. Shang, Y. Wu, J.Y. He, X.Y. Zhu, S.F. Liu, H.L. Huang, K. An, Y. Chen, S.H. Jiang, H. Wang, X.J. Liu, Z.P. Lu, Intermetallics 106 (2019) 77-87.
DOI |
[78] |
I. Moravcik, V. Hornik, P. Minárik, L. Li, I. Dlouhy, M. Janovska, D. Raabe, Z. Li, Mater. Sci. Eng.: A 781 (2020) 139242.
DOI URL |
[79] |
Y.Y. Zhao, T.G. Nieh, Intermetallics 86 (2017) 45-50.
DOI URL |
[80] | G.V. Samsonov, Handbook of the Physicochemical Properties of the Elements, Springer, Boston, 2012. |
[81] |
S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, N. Tsuji, Acta Mater. 171 (2019) 201-215.
DOI |
[82] |
X. Gao, Y. Lu, J. Liu, J. Wang, T. Wang, Y. Zhao, Materialia 8 (2019) 100485.
DOI URL |
[83] |
X. Feng, J. Zhang, K. Wu, X. Liang, G. Liu, J. Sun, Nanoscale 10 (2018) 13329-13334.
DOI URL |
[84] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283-362.
DOI URL |
[85] |
B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127 (2017) 471-480.
DOI URL |
[86] |
E. Welsch, D. Ponge, S.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, D. Raabe, Acta Mater. 116 (2016) 188-199.
DOI URL |
[87] |
J.D. Yoo, K. Park, Mater. Sci. Eng.: A 496 (2008) 417-424.
DOI URL |
[88] | S. Qiu, X. Zhang, J. Zhou, S. Cao, H. Yu, Q. Hu, Z. Sun, J. Alloys Compd. (2020) 156321. |
[89] |
S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, Z.K. Liu, J. Phys. Condens. Matter 24 (2012) 505403.
DOI URL |
[90] | X.Y. Li, X. Zhou, K. Lu, Sci. Adv. 6 (2020) z8003. |
[91] |
A. Mishra, B.K. Kad, F. Gregori, M.A. Meyers, Acta Mater. 55 (2007) 13-28.
DOI URL |
[92] |
M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49 (2001) 4025-4039.
DOI URL |
[93] |
M.A. Meyers, U.R. Andrade, A.H. Chokshi, Metal. Mater. Trans.: A 26 (1995) 2881-2893.
DOI URL |
[94] |
J.A. Venables, Philos. Mag. 6 (1961) 379-396.
DOI URL |
[95] |
M. Chen, Science 300 (2003) 1275-1277.
DOI URL |
[96] |
K.P.D. Lagerlöf, J. Castaing, P. Pirouz, A.H. Heuer, Philos. Mag.: A 82 (2002) 2841-2854.
DOI URL |
[97] |
P.A. Gruber, J. Böhm, F. Onuseit, A. Wanner, R. Spolenak, E. Arzt, Acta Mater. 56 (2008) 2318-2335.
DOI URL |
[98] |
Q. Yu, Z. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma, Nature 463 (2010) 335-338.
DOI URL |
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[3] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[4] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[5] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[6] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[7] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[8] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[9] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[10] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[11] | Zhen Li, Zhang-Zhi Shi, Hai-Jun Zhang, Hua-Fang Li, Yun Feng, Lu-Ning Wang. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 50-65. |
[12] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[13] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[14] | Jing Zhang, Sunxiang Qian, Lingdong Chen, Liqun Chen, Liping Zhao, Jie Feng. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness [J]. J. Mater. Sci. Technol., 2021, 85(0): 235-244. |
[15] | A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 196-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||