J. Mater. Sci. Technol. ›› 2021, Vol. 87: 196-206.DOI: 10.1016/j.jmst.2021.01.055
• Research Article • Previous Articles Next Articles
A.G. Mochugovskiya, N. Yu. Tabachkovaa,b, M. Esmaeili Ghayoumabadia, V.V. Cheverikina, A.V. Mikhaylovskayaa,*()
Received:
2020-10-20
Revised:
2021-01-09
Accepted:
2021-01-11
Published:
2021-10-10
Online:
2021-03-17
Contact:
A.V. Mikhaylovskaya
About author:
* E-mail address: mihaylovskaya@misis.ru (A.V. Mikhaylovskaya).A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys[J]. J. Mater. Sci. Technol., 2021, 87: 196-206.
Fig. 1. (a-e, g-k) SEM and (f, l) TEM microstructures of the as-cast (a-f) Al-Mg-Mn and (g-l) Al-Mg-Mn-Zr alloys; (b-e) and (h-k) are the elemental distribution SEM-EDS maps for Al, Mg, Mn, and Zr; inserts in (f) and (l) are corresponding SAEDs.
Fig. 2. Hardness dependences on the time of the first annealing step for one-step (solid lines) and two-step (dotted lines) regimes for the (a) Al-Mg-Mn and (b) Al-Mg-Mn-Zr alloys.
Fig. 3. TEM images of the Al-Mg-Mn alloys annealed (a-c) at 350 °C for 8 h, (d-f) in two steps at 350 °C for 4 h and at 400 °C for 4 h, and (g-i) at 450 °C for 8 h; (a, d, g) bright-field images, (b, e, h) dark-field images, and (c, f, i) the corresponding SAEDs; the green cycles mark up the reflexes of the dark field images.
Fig. 4. TEM images of the Al-Mg-Mn-Zr (a-c) alloy annealed at 350 °C for 16 h (d-f), 48 h (g-h), and at 450 °C for 8 h (g-i); bright-field images (a, d, g), dark-field images (b, e, h), and the corresponding SAEDs (c, f, i); the green cycles mark up the reflexes of the dark field images.
Fig. 5. TEM images of the Al-Mg-Mn-Zr alloy annealed in two steps at 350 °C for 32 h and at 400 °C for 4 h; bright-field images (a, d), dark-field images (b, e), and the corresponding SAEDs (c, f); the green cycles mark up the reflexes of the dark field images.
Fig. 6. TEM-EDS spectrums corresponding to the I-phase in the Al-Mg-Mn alloy annealed at 350 °C for 48 h (a) and the Al-Mg-Mn-Zr alloy annealed at 350 °C for 32 h and at 400 °C for 4 h (b); the spectrum 1 and 2 areas are shown in Figs. 3(d) and 4(d), respectively.
Fig. 7. High-resolution TEM-structures of the (a) Al-Mn-Mg and (b-d) Al-Mn-Mg-Zr alloys after annealing at 350 °C for (a, b) 16 h and (c, d) 48 h; (d) shows the high-magnified image marked up in (c) by blue dotted area; the inserts are FFT corresponding to the precipitate areas.
Fig. 8. TEM images of the thermomechanical-treated samples for the (a, d) Al-Mg-Mn alloy and (b, c, e, f) Al-Mg-Mn-Zr alloy pre-annealed in two steps; (a-c) bright-field images, (d-f) dark-field images (b, e), insert in (f) is corresponding SAED; the green cycle mark up the reflex for the dark field image.
Fig. 9. Grain structures of the (a-d) Al-Mg-Mn and (e-h) Al-Mg-Mn-Zr alloys after 30 min annealing at 400 °C for the samples pre-annealed (homogenized) at (a, e) 350 °C, 8 h; (b, f) 350 °C, 48 h, (c) 350 °C, 4 h + 400 °C, 4 h, (g) 350 °C, 32 h + 400 °C, 4 h, and (d, h) 450 °C, 8 h (OM, polarized light).
Fig. 10. EBSD-maps and the corresponding grain boundary misorientation angle distributions for the (a) Al-Mg-Mn and (b-d) Al-Mg-Mn-Zr alloys after 30 min of post-deformation annealing at 400 °C for the samples pre-annealed (after casting) at (a, b) 350 °C for 8 h, (c) 350 °C for 32 h + 400 °C for 4 h, and (d) 450 °C for 8 h; rolling direction is horizontal.
Pre-annealing regime | Precipitates type | Post-deformation annealing of cold-rolled sheet at 250 °C (non-recrystallized grain structure) | Post-deformation annealing of cold-rolled sheet at 400 °C | |||||
---|---|---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | El (%) | YS (MPa) | UTS (MPa) | El (%) | Dominated grain structure * | ||
Al-3.0Mg-1.1 Mn | ||||||||
350 °C/8 h | I | 314 ± 6 | 364 ± 8 | 8 ± 2 | 222 ± 7 | 316 ± 5 | 17 ± 2 | NR |
350 °C/16 h | I | 318 ± 4 | 370 ± 6 | 10 ± 3 | 230 ± 4 | 330 ± 2 | 16 ± 1 | NR |
350 °C/48 h | I; (Al,Mn) | 318 ± 2 | 373 ± 2 | 11 ± 2 | 243 ± 4 | 340 ± 2 | 17 ± 2 | NR |
350 °C/4 h + 400 °C /4 h | I; (Al,Mn) | 316 ± 6 | 372 ± 6 | 11 ± 2 | 229 ± 5 | 327 ± 4 | 16 ± 2 | NR |
450 °C/8 h | Al6Mn | 278 ± 4 | 339 ± 4 | 10 ± 2 | 124 ± 4 | 278 ± 5 | 24 ± 2 | R |
Al-3.0Mg-1.1 Mn-0.25 Zr alloy | ||||||||
350 °C/8 h | I | 319 ± 6 | 369 ± 6 | 7 ± 2 | 254 ± 3 | 344 ± 3 | 14 ± 3 | NR |
350 °C/16 h | I | 322 ± 6 | 372 ± 5 | 8 ± 1 | 253 ± 3 | 342 ± 4 | 14 ± 1 | NR |
350 °C/48 h | I; (Al,Mn) L12 | 345 ± 4 | 391 ± 2 | 8 ± 1 | 263 ± 3 | 353 ± 3 | 15 ± 2 | NR |
350 °C/32 h + 400 °C /4 h | I; (Al,Mn) L12 | 361 ± 2 | 402 ± 5 | 9 ± 1 | 274 ± 4 | 360 ± 3 | 14 ± 1 | NR |
450 °C/8 h | I; (Al,Mn) L12;Al6Mn | 321 ± 5 | 375 ± 4 | 11 ± 2 | 145 ± 7 | 292 ± 6 | 23 ± 2 | R |
350 °C/16 h (Al-3Mg) | - | 169 ± 2 | 232 ± 3 | 18 ± 1 | ||||
360 °C/32 h + 400 °C/4 h (Al-3Mg-0.25 Zr [ | L12 | 240 ± 3 | 300 ± 2 | 19 ± 1 | ||||
36 0 °C/4 h + 400 °C/4 h (Al-3Mg-0.2Zr-0.1Sc [ | L12 | 230 ± 5 | 295 ± 6 | 12 ± 1 |
Table 1 Mechanical properties of the thermomechanical-treated Al-Mg-Mn and Al-Mg-Mn-Zr alloys pre-annealed for various regimes.
Pre-annealing regime | Precipitates type | Post-deformation annealing of cold-rolled sheet at 250 °C (non-recrystallized grain structure) | Post-deformation annealing of cold-rolled sheet at 400 °C | |||||
---|---|---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | El (%) | YS (MPa) | UTS (MPa) | El (%) | Dominated grain structure * | ||
Al-3.0Mg-1.1 Mn | ||||||||
350 °C/8 h | I | 314 ± 6 | 364 ± 8 | 8 ± 2 | 222 ± 7 | 316 ± 5 | 17 ± 2 | NR |
350 °C/16 h | I | 318 ± 4 | 370 ± 6 | 10 ± 3 | 230 ± 4 | 330 ± 2 | 16 ± 1 | NR |
350 °C/48 h | I; (Al,Mn) | 318 ± 2 | 373 ± 2 | 11 ± 2 | 243 ± 4 | 340 ± 2 | 17 ± 2 | NR |
350 °C/4 h + 400 °C /4 h | I; (Al,Mn) | 316 ± 6 | 372 ± 6 | 11 ± 2 | 229 ± 5 | 327 ± 4 | 16 ± 2 | NR |
450 °C/8 h | Al6Mn | 278 ± 4 | 339 ± 4 | 10 ± 2 | 124 ± 4 | 278 ± 5 | 24 ± 2 | R |
Al-3.0Mg-1.1 Mn-0.25 Zr alloy | ||||||||
350 °C/8 h | I | 319 ± 6 | 369 ± 6 | 7 ± 2 | 254 ± 3 | 344 ± 3 | 14 ± 3 | NR |
350 °C/16 h | I | 322 ± 6 | 372 ± 5 | 8 ± 1 | 253 ± 3 | 342 ± 4 | 14 ± 1 | NR |
350 °C/48 h | I; (Al,Mn) L12 | 345 ± 4 | 391 ± 2 | 8 ± 1 | 263 ± 3 | 353 ± 3 | 15 ± 2 | NR |
350 °C/32 h + 400 °C /4 h | I; (Al,Mn) L12 | 361 ± 2 | 402 ± 5 | 9 ± 1 | 274 ± 4 | 360 ± 3 | 14 ± 1 | NR |
450 °C/8 h | I; (Al,Mn) L12;Al6Mn | 321 ± 5 | 375 ± 4 | 11 ± 2 | 145 ± 7 | 292 ± 6 | 23 ± 2 | R |
350 °C/16 h (Al-3Mg) | - | 169 ± 2 | 232 ± 3 | 18 ± 1 | ||||
360 °C/32 h + 400 °C/4 h (Al-3Mg-0.25 Zr [ | L12 | 240 ± 3 | 300 ± 2 | 19 ± 1 | ||||
36 0 °C/4 h + 400 °C/4 h (Al-3Mg-0.2Zr-0.1Sc [ | L12 | 230 ± 5 | 295 ± 6 | 12 ± 1 |
[1] | M. Glazoff, A. Khvan, V. Zolotorevsky, N. Belov, A. Dinsdal, Casting Aluminum Alloys, 2nd ed., Elsevier Science, United Kingdom, 2018. |
[2] |
A.V. Pozdniakov, R.Y. Barkov, A.S. Prosviryakov, A.Y. Churyumov, I.S. Golovin, V.S. Zolotorevskiy, J. Alloys. Compd. 765 (2018) 1-6.
DOI URL |
[3] |
C.B. Fuller, D.N. Seidman, D.C. Dunand, Acta Mater. 51 (2003) 4803-4814.
DOI URL |
[4] |
M.E. van Dalen, D.C. Dunand, D.N. Seidman, J. Mater. Sci. 41 (2006) 7814-7823.
DOI URL |
[5] |
A.V. Mikhaylovskaya, V.K. Portnoy, A.G. Mochugovskiy, M.Y. Zadorozhnyy, N.Y. Tabachkova, I.S. Golovin, Mater. Des. 109 (2016) 197-208.
DOI URL |
[6] |
K.E. Knipling, D.C. Dunand, D.N. Seidman, Acta Mater. 56 (2008) 114-127.
DOI URL |
[7] |
Y.C. Wang, X.D. Wu, L.F. Cao, X. Tong, M.J. Couper, Q. Liu, Mater. Sci. Eng. A 792 (2020), 139807.
DOI URL |
[8] |
Q. Tan, J. Zhang, Q. Sun, Z. Fan, G. Li, Y. Yin, Y. Liu, M.X. Zhang, Acta Mater. 196 (2020) 1-16.
DOI URL |
[9] |
N.A. Belov, A.N. Alabin, V.V. Istomin-Kastrovskii, D.G. Eskin, J. Mater. Sci. 41 (2006) 5890-5899.
DOI URL |
[10] |
V.N. Chuvil’deev, I.S. Shadrina, A.V. Nokhrin, V.I. Kopylov, A.A. Bobrov, M.Y. Gryaznov, S.V. Shotin, N.Y. Tabachkova, M.K. Chegurov, N.V. Melekhin, J. Alloys. Compd. 831 (2020), 154805.
DOI URL |
[11] |
N.Q. Vo, D.C. Dunand, D.N. Seidman, Acta Mater. 63 (2014) 73-85.
DOI URL |
[12] |
S.P. Wen, K.Y. Gao, Y. Li, H. Huang, Z.R. Nie, Scr. Mater. 65 (2011) 592-595.
DOI URL |
[13] |
Y.C. Wang, X.D. Wu, L.F. Cao, X. Tong, M.J. Couper, Q. Liu, Mater. Sci. Eng. A 792 (2020), 139807.
DOI URL |
[14] |
C. Booth-Morrison, D.N. Seidman, D.C. Dunand, Acta Mater. 60 (2012) 3643-3654.
DOI URL |
[15] |
Y.Z. Zhang, H.Y. Gao, Y. Kuai, Y.F. Han, J. Wang, B.D. Sun, S.W. Gu, W.R. You, Mater. Charact. 86 (2013) 1-8.
DOI URL |
[16] |
K. Huang, K. Marthinsen, Q. Zhao, R.E. Logé, Prog. Mater. Sci. 92 (2018) 284-359.
DOI URL |
[17] |
P.H.L. Souza, C.A.S. de Oliveira, J.M. do Vale Quaresma, J. Mater. Res. Technol. 7 (2018) 66-72.
DOI URL |
[18] |
B. Morere, C. Maurice, R. Shahani, J. Driver, Metall. Mater. Trans. A 32 (2001) 625-632.
DOI URL |
[19] |
K.E. Knipling, D.C. Dunand, D.N. Seidman, Acta Mater. 56 (2008) 1182-1195.
DOI URL |
[20] |
M.S. Zedalis, M.E. Fine, Metall. Trans. A 17 (1986) 2187-2198.
DOI URL |
[21] |
A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Y. Tabachkova, W. Mufalo, V.K. Portnoy, Mater. Charact. 139 (2018) 30-37.
DOI URL |
[22] |
S.H.M. Anijdan, D. Kang, N. Singh, M. Gallerneault, Mater. Sci. Eng. A 640 (2015) 275-279.
DOI URL |
[23] |
X.Y. Lü, E.J. Guo, P. Rometsch, L.J. Wang, Trans. Nonferrous Met. Soc. China 22 (2012) 2645-2651.
DOI URL |
[24] |
Z. Guo, G. Zhao, X.G. Chen, Mater. Charact. 102 (2015) 122-130.
DOI URL |
[25] |
P.S. Bate, F.J. Humphreys, N. Ridley, B. Zhang, Acta Mater. 53 (2005) 3059-3069.
DOI URL |
[26] |
P.C.M. Haan, J.V. Rgkom, J.A.H. Søntgerath, Mater. Sci. Forum 217-222 (1996) 765-770.
DOI URL |
[27] | D.B. Goel, P. Furrer, H. Warlimont, Aluminium 50 (1974) 511-516. |
[28] |
J. Adam, J.B. Rich, Acta Cryst. 7 (1954) 813-816.
DOI URL |
[29] | R.B. Benson, S.P. Withrow, S.J. Pennycook, Mater. Lett. 6 (1988) 93-95. |
[30] | R.J. Schaefer, F.S. Biancaniello, J.W. Cahn, Scr. Metall. Mater. 20 (1986) 1439-1444. |
[31] | E. Nes, S.E. Naess, R. Hoier, Z. Metallkd. 63 (1972) 248-525. |
[32] |
S. Shu, A.D. Luca, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A 800 (2021), 140288.
DOI URL |
[33] | Y.J. Li, L. Arnberg, Light Met. 99 (2003) 1021-1027. |
[34] | M. Poková, M. Cieslar, J. Lacaze, Manuf. Tech. 12 (2012) 212-217. |
[35] |
Y.J. Li, L. Arnberg, Acta Mater. 51 (2003) 3415-3428.
DOI URL |
[36] |
A.M.F. Muggerud, E.A. Mørtsell, Y. Li, R. Holmestad, Mater. Sci. Eng. A 567 (2013) 21-28.
DOI URL |
[37] |
W.B. Hutchinson, A. Oscarsson, A. Karlsson, Mater. Sci. Technol. 5 (1989) 1118-1127.
DOI URL |
[38] |
H.W. Huang, B.L. Ou, Mater. Des. 30 (2009) 2685-2692.
DOI URL |
[39] |
G.S. Yi, B.H. Sun, J.D. Poplawsky, Y.K. Zhu, M.L. Free, J. Alloys. Compd. 740 (2018) 461-469.
DOI URL |
[40] |
P. Donnadieu, G. Lapasset, T.H. Sanders, Philos. Mag. Lett. 70 (1994) 319-326.
DOI URL |
[41] |
L. Lodgaard, N. Ryum, Mater. Sci. Eng. A 283 (2000) 144-152.
DOI URL |
[42] | J. Rakhmonov, K. Liu, P. Rometsch, N. Parson, X.G. Chen, J. Alloys. Compd. (2020), 157937. |
[43] |
Y.J. Li, A.M.F. Muggerud, A. Olsen, T. Furu, Acta Mater. 60 (2012) 1004-1014.
DOI URL |
[44] |
K. Liu, X.G. Chen, Mater. Des. 84 (2015) 340-350.
DOI URL |
[45] | V. Hansen, J. Gjonnes, B. Andersson, J. Mater. Sci. 8 (1989) 823-826. |
[46] |
Y.J. Li, L. Arnberg, Mater. Sci. Forum 396-402 (2002) 875-880.
DOI URL |
[47] | V. Hansen, J. Gjonnes, Philos. Mag. Abingdon (Abingdon) 73 (1996) 1147-1158. |
[48] |
T. Boncina, M. Albu, F. Zupani, Metals 10 (2020) 937.
DOI URL |
[49] |
F. Zupanič, D. Wang, C. Gspan, T. Bončina, Mater. Charact. 106 (2015) 93-99.
DOI URL |
[50] |
A. Mochugovskiy, N. Tabachkova, A. Mikhaylovskaya, Mater. Lett. 247 (2019) 200-203.
DOI |
[51] |
A.G. Mochugovskiy, N.Y. Tabachkova, A.V. Mikhaylovskaya, Mater. Lett. 284 (2021), 128945.
DOI URL |
[52] |
A.V. Mikhaylovskaya, A.A. Kishchik, A.D. Kotov, O.V. Rofman, N.Y. Tabachkova, Mater. Sci. Eng. A 760 (2019) 37-46.
DOI URL |
[53] |
D. Tsivoulas, P.B. Prangnell, C. Sigli, B. Bès, Adv. Mater. Res. 89-91 (2010) 568-573.
DOI |
[54] |
D. Tsivoulas, J.D. Robson, C. Sigli, P.B. Prangnell, Acta Mater. 60 (2012) 5245-5259.
DOI URL |
[55] | S.W. Cheong, H. Weiland, Mater. Sci. Forum 153 (2007) 558-559. |
[56] |
Z. Jia, G. Hu, B. Forbord, J.K. Solberg, Mater. Sci. Eng. A 444 (2007) 284-290.
DOI URL |
[57] |
Z. Jia, G. Hu, B. Forbord, J.K. Solberg, Mater. Sci. Eng. A 483-484 (2008) 195-198.
DOI URL |
[58] |
J. Starink, N. Gao, N. Kamp, S.C. Wang, P.D. Pitcher, I. Sinclair, Mater. Sci. Eng. A 418 (2006) 241-249.
DOI URL |
[59] |
R. Kaibyshev, F. Musin, D.R. Lesuer, T.G. Nieh, Mater. Sci. Eng. A 342 (2003) 169-177.
DOI URL |
[60] |
J.D. Robson, P.B. Prangnell, Mater. Sci. Eng. A 352 (2003) 240-250.
DOI URL |
[61] |
I. Nikulin, A. Kipelova, S. Malopheyev, R. Kaibyshev, Acta Mater. 60 (2012) 487-497.
DOI URL |
[62] | A.G. Mochugovskiy, A.V. Mikhaylovskaya, M.Y. Zadorognyy, I.S. Golovin, J. Alloys. Compd. (2020), 157455. |
[63] |
A.G. Mochugovskiy, A.V. Mikhaylovskaya, Mater. Lett. 275 (2020), 128096.
DOI URL |
[64] |
D. Shechtman, I. Blech, Phys. Rev. Lett. 53 (1984) 1951-1953.
DOI URL |
[65] | G.M. Hood, R.J. Schultz, Philos. Mag. Abingdon (Abingdon) 186 (1971) 1479-1489. |
[66] | T. Marumo, S. Fujikawa, K. Hirono, J. Jpn. Inst. Met. 23 (1973) 17-25. |
[67] |
Y.H. Gao, P.F. Guan, R. Su, H.W. Chen, C. Yang, C. He, L.F. Cao, H. Song, J.Y. Zhang, X.F. Zhang, G. Liu, J.F. Nie, J. Sun, E. Ma, Mater. Res. Lett. 8 (12) (2020) 446-453.
DOI URL |
[68] |
Y.H. Gao, C. Yang, J.Y. Zhang, L.F. Cao, G. Liu, J. Sun, E. Ma, Mater. Res. Lett. 7 (2019) 18-25.
DOI |
[69] |
Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 795 (2020), 139943.
DOI URL |
[70] |
H. Wu, S.P. Wen, H. Huang, B.L. Li, X.L. Wu, K.Y. Gao, W. Wang, Z.R. Nie, Mater. Sci. Eng. A 689 (2017) 313-322.
DOI URL |
[71] | A.W. Zhu, E.A. Starke, Acta Mater. 11 (1999) 3263-3269. |
[72] |
A. Shukla, A.D. Pelton, J. Phase Equilib. Diff. 30 (2009) 28-39.
DOI URL |
[73] | J.G. Barlock, L.F. Mondolfo, Z. Metallk. 66 (1975) 605-611. |
[74] |
W. Lefebvre, N. Masquelier, J. Houard, R. Patte, H. Zapolsky, Scr. Mater. 70 (2014) 43-46.
DOI URL |
[75] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50 (2002) 4021-4035.
DOI URL |
[76] |
A.J. Ardell, Metall. Trans. A 16 (1985) 2131-2165.
DOI URL |
[77] |
E. Ness, Acta Metall. 20 (1972) 499-506.
DOI URL |
[78] | M.S. Zedalis, M.E. Fine, Scr. Metall. Mater. 17 (1983) 1247-1251. |
[79] |
T. Tian, X.F. Wang, W. Li, Solid State Commun. 156 (2013) 69-75.
DOI URL |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[3] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[4] | Yongxiao Wang, Xinwu Ma, Guoqun Zhao, Xiao Xu, Xiaoxue Chen, Cunsheng Zhang. Microstructure evolution of spray deposited and as-cast 2195 Al-Li alloys during homogenization [J]. J. Mater. Sci. Technol., 2021, 82(0): 161-178. |
[5] | Yunwu Ma, Sizhe Niu, Huihong Liu, Yongbing Li, Ninshu Ma. Microstructural evolution in friction self-piercing riveted aluminum alloy AA7075-T6 joints [J]. J. Mater. Sci. Technol., 2021, 82(0): 80-95. |
[6] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[7] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[8] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[9] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[10] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[11] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[12] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[13] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
[14] | Yanying Hu, Huijie Liu, Dongrui Li. Contribution of ultrasonic to microstructure and mechanical properties of tilt probe penetrating friction stir welded joint [J]. J. Mater. Sci. Technol., 2021, 85(0): 205-217. |
[15] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||