J. Mater. Sci. Technol. ›› 2021, Vol. 87: 207-215.DOI: 10.1016/j.jmst.2021.01.045
• Research Article • Previous Articles Next Articles
Hengming Huanga,b, Kan Hua, Chen Xuec,d, Zhiliang Wangb, Zhenggang Fanga, Ling Zhoua, Menglong Suna, Zhongzi Xua, Jiahui Koua,*(), Lianzhou Wangb,*(
), Chunhua Lua,*(
)
Received:
2020-12-02
Revised:
2021-01-11
Accepted:
2021-01-12
Published:
2021-10-10
Online:
2021-03-11
Contact:
Jiahui Kou,Lianzhou Wang,Chunhua Lu
About author:
chhlu@njtech.edu.cn (C. Lu).Hengming Huang, Kan Hu, Chen Xue, Zhiliang Wang, Zhenggang Fang, Ling Zhou, Menglong Sun, Zhongzi Xu, Jiahui Kou, Lianzhou Wang, Chunhua Lu. Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production[J]. J. Mater. Sci. Technol., 2021, 87: 207-215.
Fig. 1. (a) Absorption spectra and (b) Tauc plots of sample CN-T0 - CN-T1 (Inset: Optical photograph). (c) XRD patterns of CN and CN-T0 - CN-T1. (d) FTIR spectra of CN and CN-T0 - CN-T1 (Inset: Schematic diagram of tri-s-triazine structural units).
Fig. 2. TEM images of (a) CN-T0 and (b) CN-T005 with corresponding C, N, and O element specific gravity from EDX spectra. (c)-(e) TEM images of CN-T005 at different magnifications.
Fig. 3. Raman and XPS spectra of CN-T0, CN-T005, and CN-T1: (a) Raman spectra for excitation wavelength λex =325 nm; (b) Raman spectra for excitation wavelength λex =514 nm; Fine XPS spectra of (c) N and (d) C elements.
Scheme 2. Schematic diagram of the possible reaction pathways for the hybrid g-C3N4 nanosheets. (a) Possible reaction pathways for synthesizing N-doped GR fragments during the thermal polymerization process of TEOA. (b) Reaction pathways for synthesizing tri-s-triazine unit structure during thermal polymerization process of urea. (c) Hybrid g-C3N4 polymerized by N-doped GR fragment and tri-s-triazine unit structure.
Fig. 4. (a) Comparison of photocatalytic H2 production performance of g-C3N4, CN-T0, and CN-T005 in 4 h. (b) Comparison of photocatalytic H2 production performance of g-C3N4 and CN-T0 - CN-T1 in unit time. (c) Steady-state PL spectra and (d) time-resolved PL decay of g-C3N4, CN-T0, and CN-T005.
Fig. 5. Structure model and band structure analysis of hybrid g-C3N4. (a) Structure model of hybrid g-C3N4. (b) Band structure of hybrid g-C3N4: PDOS of different atoms. (c) Band structure of hybrid g-C3N4: PDOS of different fragments. (d) Band structure of the hybrid g-C3N4 and the separation pathways of the photo-induced carriers.
[1] |
K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440 (2006) 295.
DOI URL |
[2] |
A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
DOI URL |
[3] |
S. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2 (2017) 17050.
DOI URL |
[4] |
C. Dai, B. Liu, Energy Environ. Sci. 13 (2020) 24-52.
DOI URL |
[5] |
Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B.J. Ni, Nano Res. 13 (2020) 18-37.
DOI URL |
[6] | Y. Wang, S.Z.F. Phua, G. Dong, X. Liu, B. He, Q. Zhai, Y. Li, C. Zheng, H. Quan, Z. Li, Y. Zhao, Chemistry 5 (2019) 2775-2813. |
[7] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[8] |
Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc. 132 (2010) 6294-6295.
DOI URL |
[9] |
Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68-89.
DOI URL |
[10] |
X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 21 (2009) 1609-1612.
DOI URL |
[11] |
E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Energy Environ. Sci. 6 (2013) 3112.
DOI URL |
[12] |
Y. Zhang, T. Mori, L. Niu, J. Ye, Energy Environ. Sci. 4 (2011) 4517.
DOI URL |
[13] | L. Cheng, H. Zhang, X. Li, J. Fan, Q. Xiang, Small 2005231 (2020) 1-22. |
[14] |
Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115 (2011) 7355-7363.
DOI URL |
[15] | Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, Small 9 (2013) 3336-3344. |
[16] |
G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 3433-3437.
DOI URL |
[17] |
F. He, Z. Wang, Y. Li, S. Peng, B. Liu, Appl. Catal. B Environ. 269 (2020), 118828.
DOI URL |
[18] |
S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55 (2016) 1830-1834.
DOI URL |
[19] |
Z.T. Wang, J.L. Xu, H. Zhou, X. Zhang, Rare Met. 38 (2019) 459-467.
DOI URL |
[20] |
G. Dong, K. Zhao, L. Zhang, Chem. Commun. 48 (2012) 6178-6180.
DOI URL |
[21] |
Y. Huang, D. Li, Z. Fang, R. Chen, B. Luo, W. Shi, Appl. Catal. B Environ. 254 (2019) 128-134.
DOI URL |
[22] |
J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. Dong, P. Chen, G. Jiang, Z. Wang, F. Dong, Chem. Eng. J. 379 (2020), 122282.
DOI URL |
[23] |
Z. Yang, Q. Zhang, L. Ren, X. Chen, D. Wang, L. Liu, J. Ye, Chem. Commun. 57 (2021) 871-874.
DOI URL |
[24] |
X. Wang, C. Zhou, R. Shi, Q. Liu, G.I.N. Waterhouse, L. Wu, C.-H. Tung, T. Zhang, Nano Res. 12 (2019) 2385-2389.
DOI URL |
[25] |
S. Tian, S. Chen, X. Ren, R. Cao, H. Hu, F. Bai, Nano Res. 12 (2019) 3109-3115.
DOI URL |
[26] |
S. Xu, Y. Chen, J. Gong, J. Wang, Cryst. Growth Des. 18 (2018) 2305-2315.
DOI URL |
[27] |
M. Salvalaglio, C. Perego, F. Giberti, M. Mazzotti, M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) E6-E14.
DOI URL |
[28] |
Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 6 (2016), 1601273.
DOI URL |
[29] |
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
[30] |
B. Wang, H. Cai, D. Zhao, M. Song, P. Guo, S. Shen, D. Li, S. Yang, Appl. Catal. B Environ. 244 (2019) 486-493.
DOI URL |
[31] |
H. Li, S. Gan, H. Wang, D. Han, L. Niu, Adv. Mater. 27 (2015) 6906-6913.
DOI URL |
[32] |
Y. Hu, J. Yang, J. Tian, L. Jia, J.S. Yu, RSC Adv. 5 (2015) 15366-15373.
DOI URL |
[33] |
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.-T. Lee, Angew. Chemie Int. Ed. 49 (2010) 4430-4434.
DOI URL |
[34] |
J. Fang, H. Fan, M. Li, C. Long, J. Mater. Chem. A 3 (2015) 13819-13826.
DOI URL |
[35] |
N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T. Zhang, H. Huang, Nano Energy 38 (2017) 72-81.
DOI URL |
[36] |
J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, G. Zheng, Adv. Mater. 25 (2013) 6569-6574.
DOI URL |
[37] |
H. Chen, Y. Xie, A.M. Kirillov, L. Liu, M. Yu, W. Liu, Y. Tang, Chem. Commun. 51 (2015) 5036-5039.
DOI URL |
[38] |
M.T. Tajabadi, W.J. Basirun, F. Lorestani, R. Zakaria, S. Baradaran, Y.M. Amin, M.R. Mahmoudian, M. Rezayi, M. Sookhakian, Electrochim. Acta 151 (2015) 126-133.
DOI URL |
[39] |
Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Adv. Mater. 25 (2013) 6291-6297.
DOI URL |
[40] |
Y. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Nano Lett. 16 (2016) 2268-2277.
DOI URL |
[41] |
Y. Yu, W. Yan, X. Wang, P. Li, W. Gao, H. Zou, S. Wu, K. Ding, Adv. Mater. 30 (2018), 1705060.
DOI URL |
[42] |
Y. Wang, M.K. Bayazit, S.J.A. Moniz, Q. Ruan, C.C. Lau, N. Martsinovich, J. Tang, Energy Environ. Sci. 10 (2017) 1643-1651.
DOI URL |
[43] |
K. Chu, Y.P. Liu, Y.B. Li, Y.L. Guo, Y. Tian, ACS Appl. Mater. Interfaces 12 (2020) 7081-7090.
DOI URL |
[44] |
J. Shen, Y. Li, H. Zhao, K. Pan, X. Li, Y. Qu, G. Wang, D. Wang, Nano Res. 12 (2019) 1931-1936.
DOI URL |
[45] |
L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong, Y. Zhang, Y. Bi, Angew. Chem. Int. Ed. 59 (2020) 6224-6229.
DOI URL |
[46] |
Y. Li, M. Gu, T. Shi, W. Cui, X. Zhang, F. Dong, J. Cheng, J. Fan, K. Lv, Appl. Catal. B Environ. 262 (2020), 118281.
DOI URL |
[47] |
G. Zhao, H. Pang, G. Liu, P. Li, H. Liu, H. Zhang, L. Shi, J. Ye, Appl. Catal. B Environ. 200 (2017) 141-149.
DOI URL |
[48] |
J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, ACS Nano 9 (2015) 931-940.
DOI URL |
[49] |
P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo, Nano Energy 56 (2019) 127-137.
DOI URL |
[50] |
S. Wang, B.Y. Guan, X.W.D. Lou, J. Am. Chem. Soc. 140 (2018) 5037-5040.
DOI URL |
[51] |
J. Chen, C.-L. Dong, D. Zhao, Y.-C. Huang, X. Wang, L. Samad, L. Dang, M. Shearer, S. Shen, L. Guo, Adv. Mater. 29 (2017), 1606198.
DOI URL |
[1] | Ying Li, Changdan Gong, Chenggong Li, Kunpeng Ruan, Chao Liu, Huan Liu, Junwei Gu. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. J. Mater. Sci. Technol., 2021, 82(0): 250-256. |
[2] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
[3] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[4] | Jiuyi Li, Xiankang Zhong, Tianguan Wang, Tan Shang, Junying Hu, Zhi Zhang, Dezhi Zeng, Duo Hou, Taihe Shi. Synergistic effect of erosion and hydrogen on properties of passive film on 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 67(0): 1-10. |
[5] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[6] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[7] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[8] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[9] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[10] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[11] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
[12] | Jingjing Liu, Shuai Zhu, Xiangyu Chen, Jie Xu, Lu Zhang, Kai Yan, Wei Chen, Honghui Cheng, Shumin Han. Superior electrochemical performance of La-Mg-Ni-based alloys with novel A2B7-A7B23 biphase superlattice structure [J]. J. Mater. Sci. Technol., 2021, 80(0): 128-138. |
[13] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
[14] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[15] | Zheng Huang, Zhuxian Yang, Mian Zahid Hussain, Quanli Jia, Yanqiu Zhu, Yongde Xia. Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 84(0): 76-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||