J. Mater. Sci. Technol. ›› 2021, Vol. 80: 128-138.DOI: 10.1016/j.jmst.2020.10.081
• Research Article • Previous Articles Next Articles
Jingjing Liua, Shuai Zhua, Xiangyu Chena, Jie Xua, Lu Zhangb, Kai Yana, Wei Chenc, Honghui Chenga,*(), Shumin Hanb,*(
)
Received:
2020-09-19
Accepted:
2020-10-30
Published:
2020-12-24
Online:
2020-12-24
Contact:
Honghui Cheng,Shumin Han
About author:
*E-mail addresses: hhcheng@yzu.edu.cn, 382121933@qq.com (H. Cheng),Jingjing Liu, Shuai Zhu, Xiangyu Chen, Jie Xu, Lu Zhang, Kai Yan, Wei Chen, Honghui Cheng, Shumin Han. Superior electrochemical performance of La-Mg-Ni-based alloys with novel A2B7-A7B23 biphase superlattice structure[J]. J. Mater. Sci. Technol., 2021, 80: 128-138.
Fig. 1. Preparation steps of nickel container (a)-(d), heat treatment equipment and procedures (e), Mg contents (f) and B/A ratios (g) of the alloy samples.
Fig. 2. XRD patterns in 2 Theta range of 20-90 degree (a) and 25-41 degree (b) of #M, #T, #B1-#B3 and #S alloys, superlattice crystal structure of (La,Mg)7Ni23 phase (c), phase abundance from Rietveld refinements (d) and back-scattered SEM image of #B1 alloy (e).
Samples | Phases | Phase abundance (wt.%) | a (Å) | c (Å) | V (Å3) |
---|---|---|---|---|---|
#M | LaMgNi4 | 3.7 | 7.184 | —— | 321.14 |
3R-(La,Mg)Ni3 | 32.9 | 5.041 | 24.306 | 534.81 | |
2H-(La,Mg)2Ni7 | 29.9 | 5.038 | 24.277 | 533.67 | |
3R-(La,Mg)2Ni7 | 17.3 | 5.039 | 36.416 | 800.59 | |
3R-(La,Mg)5Ni19 | 8.5 | 5.035 | 48.531 | 1065.57 | |
LaNi5 | 7.7 | 5.038 | 3.988 | 87.65 | |
#T | 3R-(La,Mg)Ni3 | 24.7 | 5.036 | 24.356 | 534.94 |
2H-(La,Mg)2Ni7 | 57.7 | 5.038 | 24.298 | 534.02 | |
3R-(La,Mg)2Ni7 | 17.6 | 5.035 | 36.508 | 801.63 | |
#B1 | (La,Mg)7Ni23 | 44.3 | 5.040 | 40.578 | 892.52 |
2H-(La,Mg)2Ni7 | 55.7 | 5.038 | 24.325 | 534.71 | |
#B2 | (La,Mg)7Ni23 | 25.6 | 5.037 | 40.540 | 890.83 |
2H-(La,Mg)2Ni7 | 74.4 | 5.037 | 24.328 | 534.60 | |
#B3 | (La,Mg)7Ni23 | 15.4 | 5.038 | 40.587 | 892.00 |
2H-(La,Mg)2Ni7 | 84.6 | 5.038 | 24.318 | 534.42 | |
#S | 2H-(La,Mg)2Ni7 | 100 | 5.038 | 24.296 | 533.96 |
Table 1 Phase abundance, lattice parameters, and cell volumes of the alloy samples.
Samples | Phases | Phase abundance (wt.%) | a (Å) | c (Å) | V (Å3) |
---|---|---|---|---|---|
#M | LaMgNi4 | 3.7 | 7.184 | —— | 321.14 |
3R-(La,Mg)Ni3 | 32.9 | 5.041 | 24.306 | 534.81 | |
2H-(La,Mg)2Ni7 | 29.9 | 5.038 | 24.277 | 533.67 | |
3R-(La,Mg)2Ni7 | 17.3 | 5.039 | 36.416 | 800.59 | |
3R-(La,Mg)5Ni19 | 8.5 | 5.035 | 48.531 | 1065.57 | |
LaNi5 | 7.7 | 5.038 | 3.988 | 87.65 | |
#T | 3R-(La,Mg)Ni3 | 24.7 | 5.036 | 24.356 | 534.94 |
2H-(La,Mg)2Ni7 | 57.7 | 5.038 | 24.298 | 534.02 | |
3R-(La,Mg)2Ni7 | 17.6 | 5.035 | 36.508 | 801.63 | |
#B1 | (La,Mg)7Ni23 | 44.3 | 5.040 | 40.578 | 892.52 |
2H-(La,Mg)2Ni7 | 55.7 | 5.038 | 24.325 | 534.71 | |
#B2 | (La,Mg)7Ni23 | 25.6 | 5.037 | 40.540 | 890.83 |
2H-(La,Mg)2Ni7 | 74.4 | 5.037 | 24.328 | 534.60 | |
#B3 | (La,Mg)7Ni23 | 15.4 | 5.038 | 40.587 | 892.00 |
2H-(La,Mg)2Ni7 | 84.6 | 5.038 | 24.318 | 534.42 | |
#S | 2H-(La,Mg)2Ni7 | 100 | 5.038 | 24.296 | 533.96 |
Fig. 4. Activation curves of the #M, #T, #B1-#B3 and #S alloy electrodes (a), XRD pattern of the #B1 alloy at full charge state (b), discharge curves of #B1-#B3 and #S alloy electrodes at the 4th cycle (c) and XRD pattern of the #B1 alloy at complete discharge state (d).
Samples | Activation cycle | Cmax (mA g-1) | S100 (%) | HRD1500 (%) |
---|---|---|---|---|
#M | 2 | 376 | 70.6 | 52.2 |
#T | 2 | 397 | 80.5 | 49.2 |
#B1 | 2 | 402 | 79.1 | 47.5 |
#B2 | 2 | 408 | 82.0 | 48.8 |
#B3 | 2 | 413 | 81.0 | 52.7 |
#S | 2 | 394 | 87.7 | 47.0 |
Table 2 Electrochemical properties of the alloy electrodes.
Samples | Activation cycle | Cmax (mA g-1) | S100 (%) | HRD1500 (%) |
---|---|---|---|---|
#M | 2 | 376 | 70.6 | 52.2 |
#T | 2 | 397 | 80.5 | 49.2 |
#B1 | 2 | 402 | 79.1 | 47.5 |
#B2 | 2 | 408 | 82.0 | 48.8 |
#B3 | 2 | 413 | 81.0 | 52.7 |
#S | 2 | 394 | 87.7 | 47.0 |
Fig. 5. Cycling stability curves of the #M, #T, #B1-#B3 and #S alloy electrodes (a), Tafel curves of #B1 and #S alloy electrodes (b) and surface morphologies of #B1 (c) and #S (d) alloy particles after 100 cycles.
Fig. 6. SEM images of #B1 (a1-a4) and #S (b1-b4) alloy particles, particle size distribution curves of #B1 and #S (c) after different cycles, and XRD patterns of #B1 and #S alloy powder after 20 cycles (d).
Fig. 7. HRD property of the #M, #T, #B1-#B3 and #S alloy electrodes at various discharge current densities (a), and XRD patterns of #B1 alloy powder at different discharge states (b).
Fig. 8. Linear polarization curves (a), EIS curves (b), anode polarization curves (c) and constant potential step curves (d) of #B1-#B3 and #S alloy electrodes.
Samples | Rct (mΩ) | I0 (mA g-1) | IL (mA g-1) | D (10-10 cm2 s-1) |
---|---|---|---|---|
#B1 | 258.9 | 282.8 | 2693 | 1.16 |
#B2 | 251.6 | 297.8 | 2871 | 1.21 |
#B3 | 241.0 | 317.4 | 3145 | 1.32 |
#S | 262.1 | 278.3 | 2483 | 1.13 |
Table 3 Kinetics parameters of #B1-#B3 and #S alloy electrodes.
Samples | Rct (mΩ) | I0 (mA g-1) | IL (mA g-1) | D (10-10 cm2 s-1) |
---|---|---|---|---|
#B1 | 258.9 | 282.8 | 2693 | 1.16 |
#B2 | 251.6 | 297.8 | 2871 | 1.21 |
#B3 | 241.0 | 317.4 | 3145 | 1.32 |
#S | 262.1 | 278.3 | 2483 | 1.13 |
[1] | Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 3 (2018) 279-289. |
[2] |
W. Wang, W. Guo, X. Liu, S. Zhang, Y. Zhao, Y. Li, L. Zhang, S. Han, J. Power Sources 445 (2020) 227273.
DOI URL |
[3] |
Y.H. Zhang, X. Wei, J.L. Gao, F. Hu, Y. Qi, D.L. Zhao, Electrochim. Acta 342 (2020) 136123.
DOI URL |
[4] |
L.Z. Ouyang, J.L. Huang, H. Wang, J.W. Liu, M. Zhu, Mater. Chem. Phys. 200 (2017) 164-178.
DOI URL |
[5] |
Y. Ma, T.F. Zhang, W.J. He, Q. Luo, Z.W. Li, W. Zhang, J.P. He, Q. Li, Int. J. Hydrogen Energy 45 (2020) 12048-12070.
DOI URL |
[6] |
L. Wang, X. Zhang, S.J. Zhou, J. Xu, H.Z. Yan, Q. Luo, Q. Li, Int. J. Hydrogen Energy 45 (2020) 16677-16689.
DOI URL |
[7] |
J.C. Li, W.H. Zhou, D. Zhu, J. He, C.L. Wu, Y.G. Chen, Chem. Eng. J. 379 (2020) 122204.
DOI URL |
[8] |
C.C. Yang, C.C. Wang, M.M. Li, Q. Jiang, J. Mater. Chem. A 5 (2017)1145-1152.
DOI URL |
[9] |
C.C. Wang, Y.T. Zhou, C.C. Yang, Q. Jiang, Chem. Eng. J. 352 (2018) 325-332.
DOI URL |
[10] |
Y.F. Liu, H.G. Pan, M.X. Gao, Q.D. Wang, J. Mater. Chem. 21 (2011) 4743-4755.
DOI URL |
[11] |
K.H. Young, J. Nei, Materials 6 (2013) 4574-4608.
DOI URL |
[12] |
L. Zhang, Z.R. Jia, W.F. Wang, I.A. Rodríguez-Pérez, Y.M. Zhao, Y. Li, X. Zhao, L.M. Wang, S.M. Han, J. Power Sources 433 (2019) 126687.
DOI URL |
[13] |
Y. Shi, H.Y. Leng, L. Wei, S.L. Chen, Q. Li, Electrochim. Acta 296 (2019) 18-26.
DOI |
[14] |
Y.M. Li, Z.C. Liu, G.F. Zhang, Y.H. Zhang, H.P. Ren, J. Power Sources 441 (2019) 126667.
DOI URL |
[15] |
S. Yasuoka, Y. Magari, T. Murata, T. Tanaka, J. Ishida, H. Nakamura, T. Nohma, M. Kihara, Y. Baba, H. Teraoka, J. Power Sources 156 (2006) 662-666.
DOI URL |
[16] |
Y. Shi, H. Leng, Q. Luo, S.L. Chena, Q. Li, Catal. Today 318 (2018) 86-90.
DOI URL |
[17] |
H. Hayakawa, E. Akiba, M. Gotoh, T. Kohno, Mater. Trans. 46 (2005)1393-1401.
DOI URL |
[18] |
J.C. Crivello, J. Zhang, M. Latroche, J. Phys. Chem. C 115 (2011) 25470-25478.
DOI URL |
[19] |
J.J. Liu, S.M. Han, Y. Li, L. Zhang, Y.M. Zhao, S.Q. Yang, B.Z. Liu, Int. J. Hydrogen Energy 41 (2016) 20261-20275.
DOI URL |
[20] |
Q.A. Zhang, Z.L. Chen, Y.T. Li, F. Fang, D.L. Sun, L.Z. Ouyang, M. Zhu, J. Phys. Chem. C 119 (2015) 4719-4727.
DOI URL |
[21] |
V. Charbonnier, N. Madern, J. Monnier, J. Zhang, V. Paul-Boncour, M. Latroche, Int. J. Hydrogen Energy 45 (2020) 11686-11694.
DOI URL |
[22] |
J.J. Liu, Y. Li, D. Han, S.Q. Yang, X.C. Chen, L. Zhang, S.M. Han, J. Power Sources 300 (2015) 77-86.
DOI URL |
[23] |
W. Lv, J.G. Yuan, B. Zhang, Y. Wu, J. Alloys. Compd. 730 (2018) 360-368.
DOI URL |
[24] |
J.J. Liu, S.M. Han, Y. Li, J.L. Zhang, Y.M. Zhao, L.D. Che, Int. J. Hydrogen Energy 38 (2013) 14903-14911.
DOI URL |
[25] |
Y.M. Zhao, S. Zhang, X.X. Liu, W.F. Wang, L. Zhang, Y. Li, S.M. Han, Int. J. Hydrogen Energy 43 (2018) 17809-17820.
DOI URL |
[26] |
J.J. Liu, S.M. Han, D. Han, Y. Li, S.Q. Yang, L. Zhang, Y.M. Zhao, J. Power Sources 287 (2015) 237-246.
DOI URL |
[27] |
L. Zhang, S.M. Han, Y. Li, J.J. Liu, J.L. Zhang, J.D. Wang, S.Q. Yang, Int. J. Hydrogen Energy 38 (2013) 10431-10437.
DOI URL |
[28] | R.A. Young, The Rietveld Method, first ed., Oxford University Press, UK, 1995. |
[29] |
T.Z. Huang, J.T. Han, Y.H. Zhang, J.M. Yu, G.X. Sun, H. Ren, X.X. Yuan, J. Power Sources 196 (2011) 9585-9589.
DOI URL |
[30] | K. Kadir, D. Noreus, I. Yamashita, Phys. Inorg. Chem. 34 (2002) 140-143. |
[31] |
X.B. Zhang, D.Z. Sun, W.Y. Yin, Y.J. Chai, M.S. Zhao, Electrochim. Acta 50 (2005) 2911-2918.
DOI URL |
[32] |
F.L. Zhang, Y.C. Luo, D.H. Wang, R.X. Yan, L. Kang, J.H. Chen, J. Alloys. Compd. 439 (2007) 181-188.
DOI URL |
[33] |
Q.A. Zhang, M.H. Fang, T.Z. Si, F. Fang, D.L. Sun, L.Z. Ouyang, M. Zhu, J. Phys. Chem. C 114 (2010) 11686-11692.
DOI URL |
[34] |
E.H. Kisi, C.E. Buckley, E.M. Gray, J. Alloys. Compd. 185 (1992) 369-384.
DOI URL |
[35] |
E. Akiba, H. Hayakawa, T. Kohno, J. Alloys. Compd 408-412 (2006) 280-283.
DOI URL |
[36] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[37] |
K. Edalati, R. Uehiro, Y. Ikeda, H.W. Li, H. Emami, Y. Filinchuk, M. Arita, X. Sauvage, I. Tanaka, E. Akiba, Z. Horita, Acta Mater. 149 (2018) 88-96.
DOI URL |
[38] |
J.J. Liu, Y.K. Yan, H.H. Cheng, S.M. Han, Y.F. Lv, K. Li, C. Lu, J. Power Sources 351 (2017) 26-34.
DOI URL |
[39] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[40] |
Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072-18087.
DOI URL |
[41] |
Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magnesium Alloys 7 (2019) 58-71.
DOI URL |
[42] |
Y.P. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[43] |
J.J. Liu, Y. Li, S.M. Han, S.Q. Yang, W.Z. Shen, X.C. Chen, Y.M. Zhao, J. Electrochem. Soc. 160 (2013) A1139-A1145.
DOI URL |
[44] |
N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloys. Compd. 202 (1993) 183-197.
DOI URL |
[45] |
F. Li, K. Young, T. Ouchi, M.A. Fetcenko, J. Alloys. Compd. 471 (2009) 371-377.
DOI URL |
[1] | C.Q. Li, D.K. Xu, Z.R. Zhang, E.H. Han. Influence of the lithium content on the negative difference effect of Mg-Li alloys [J]. J. Mater. Sci. Technol., 2020, 57(0): 138-145. |
[2] | Songpu Cheng, Xiaohong Xia, Hongbo Liu, Yuxi Chen. Core-shell structured MoS2@S spherical cathode with improved electrochemical performance for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2018, 34(10): 1912-1918. |
[3] | Hui Yani,Cao Liyun,*,Xu Zhanwei,Huang** Jianfeng,Ouyang Haibo,Li Jiayin,Hu Hailing. In Situ Synthesis of Core-Shell Li4Ti5O12 @Polyaniline Composites with Enhanced Rate Performance for Lithium-ion Battery Anodes [J]. J. Mater. Sci. Technol., 2017, 33(3): 231-238. |
[4] | Sai Li, Xiaodong Yang, Haiyan Zhu, Yan Liu, Yongning Liu. Hydrogen Storage Alloy and Carbon Nanotubes Mixed Catalyst in a Direct Borohydride Fuel Cell [J]. J Mater Sci Technol, 2011, 27(12): 1089-1093. |
[5] | Lianbang Wang Guobin Wu Zhenzhen Yang Yunfang Gao Xinbiao Mao Chun'an May. Electrochemical Characteristics of LaNi4.5Al0.5 Alloy Used as Anodic Catalyst in a Direct Borohydride Fuel Cell [J]. J Mater Sci Technol, 2011, 27(1): 46-50. |
[6] | Lianbang WANG, Chunan MA, Xinbiao MAO, Yuanming SUN, Seijiro SUDA. AB5-type Hydrogen Storage Alloy Modified with Ti/Zr Used as Anodic Materials in Borohydride Fuel Cell [J]. J Mater Sci Technol, 2005, 21(06): 831-835. |
[7] | Zhiqing YUAN, Guanglie LU, Bin LIAO, Yongquan LEI. Geometric Effects of La1+xMg2-xNi9 (x=0.02~1.0) Ternary Alloys on Their Hydrogen Storage Capacities [J]. J Mater Sci Technol, 2005, 21(02): 231-233. |
[8] | Hai JING, Hong GUO, Shuguang ZHANG, Zili MA, Shaoming ZHANG. Study on Fine Structure of Gas Atomized LaNi5-based Alloys [J]. J Mater Sci Technol, 2003, 19(05): 425-427. |
[9] | Quan'an LI, Yungui CHEN, Mingjing TU. Effect of Stoichiometry on Properties of Rare-Earth-Based Hydrogen Storage Alloy for Nickel-Metal Hydride Secondary Battery [J]. J Mater Sci Technol, 2003, 19(01): 90-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||