J. Mater. Sci. Technol. ›› 2021, Vol. 80: 117-127.DOI: 10.1016/j.jmst.2020.11.046
• Research Article • Previous Articles Next Articles
Muhammad Ali Siddiquia,b,c, Ihsan Ullaha,b, Hui Liua,b, Shuyuan Zhanga,b, Ling Rena,*(), Ke Yanga
Received:
2020-08-26
Accepted:
2020-11-19
Published:
2020-12-24
Online:
2020-12-24
Contact:
Ling Ren
About author:
*E-mail address: lren@imr.ac.cn (L. Ren).Muhammad Ali Siddiqui, Ihsan Ullah, Hui Liu, Shuyuan Zhang, Ling Ren, Ke Yang. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy[J]. J. Mater. Sci. Technol., 2021, 80: 117-127.
Fig. 1. Effect of BSA protein on antibacterial activity of Ti-3Cu alloy, co-cultured with E.coil for 1 day and Cu ion concentration released (a) Control 0?g/L BSA CpTi; (b) 0?g/L BSA Ti-3Cu; (c) 1?g/L BSA Ti-3Cu; (d) 3?g/L BSA Ti-3Cu; (e) 6?g/L BSA Ti-3Cu; (f) 9?g/L BSA Ti-3Cu (g) antibacterial rates and (h) Cu ions concentration released from Ti-3Cu alloy in 37?°C in PBS solution containing 0, 3 and 6 g/L BSA protein.
Fig. 2. OCP measurements for 3600?s, pH?=?7.4?±?0.2 at 37?°C. (a) Ti-3Cu alloy in the solutions of PBS with various BSA concentrations (0, 1, 3, and 6?g L -1), and (b) variation of OCP as a function of BSA concentration.
Fig. 3. Cyclic voltammograms of Ti-3Cu alloy, the scan rate of 500?mV/s. (a) CV of Ti-3Cu alloy recorded in PBS pH 7.4?±?0.2 without BSA protein; (b) CV of Ti-3Cu alloy recorded in PBS pH 7.4?±?0.2 with 1?g L -1 BSA protein and (c) 10th cycle CV scan of Ti-3Cu alloy recorded in PBS pH 7.4?±?0.2 with the addition of BSA (0, 1, 3 and 6?g L -1).
No | Reaction | E(VSCE) [References] |
---|---|---|
1 | Ti2O3 + H2O ↔ 2TiO 2 +2H+ +2e- Eo = -0.786-0.0591 pH | -1.22 [ |
2 | Cu ↔ Cu + + e- Eo = +0.520 + 0.0591 log[Cu+] | 0.52 [ |
3 | Cu2O + 3H2O ↔ 2Cu(OH) 2 + 2H+ +2e- Eo = +0.747-0.0591 pH | 0.30 [ |
4 | 2Cu++ + H2O + 2e- ↔ Cu 2O + 2H+ Eo = +0.203 + 0.0591 pH - 0.0591 log[Cu++] | 0.64 [ |
Table 1 Reversible potential of redox reactions among Ti-H2O and Cu-H2O systems.
No | Reaction | E(VSCE) [References] |
---|---|---|
1 | Ti2O3 + H2O ↔ 2TiO 2 +2H+ +2e- Eo = -0.786-0.0591 pH | -1.22 [ |
2 | Cu ↔ Cu + + e- Eo = +0.520 + 0.0591 log[Cu+] | 0.52 [ |
3 | Cu2O + 3H2O ↔ 2Cu(OH) 2 + 2H+ +2e- Eo = +0.747-0.0591 pH | 0.30 [ |
4 | 2Cu++ + H2O + 2e- ↔ Cu 2O + 2H+ Eo = +0.203 + 0.0591 pH - 0.0591 log[Cu++] | 0.64 [ |
Fig. 4. Potentiodynamic polarization curves of Ti-3Cu alloy in PBS solutions with various BSA concentrations (0, 1, 3 and 9?g L-1) from -0.8?V to 2.0?V vs. SCE with a scan rate of 0.150?mV s-1 in aerated condition at 37?°C and pH?=?7.4?±?0.2.
BSA (g L-1) | Ip (μA cm-2) | Epa (mV vs. SEC) | Ecorr (mV vs. SEC) | Icorr (nA cm-2) | Corrosion rate (μm year-1) |
---|---|---|---|---|---|
0 | 0.69 (±0.01) | 290-1201 | -312 (±1) | 8.60 (±0.2) | 0.665 (±0.02) |
1 | 0.69 (±0.01) | 290-1211 | -387 (±1) | 7.40 (±0.1) | 0.572 (±0.03) |
3 | 0.68 (±0.02) | 280 - 1230 | -320 (±1) | 6.32 (±0.1) | 0.489 (±0.01) |
6 | 0.68 (±0.01) | 280-1231 | -218 (±1) | 6.17 (±0.1) | 0.477 (±0.02) |
Table 2 Potentiodynamic polarization measurements of Ti-3Cu alloy in aerated PBS solution at 37?°C and pH 7.4?±?0.2 at various BSA concentrations.
BSA (g L-1) | Ip (μA cm-2) | Epa (mV vs. SEC) | Ecorr (mV vs. SEC) | Icorr (nA cm-2) | Corrosion rate (μm year-1) |
---|---|---|---|---|---|
0 | 0.69 (±0.01) | 290-1201 | -312 (±1) | 8.60 (±0.2) | 0.665 (±0.02) |
1 | 0.69 (±0.01) | 290-1211 | -387 (±1) | 7.40 (±0.1) | 0.572 (±0.03) |
3 | 0.68 (±0.02) | 280 - 1230 | -320 (±1) | 6.32 (±0.1) | 0.489 (±0.01) |
6 | 0.68 (±0.01) | 280-1231 | -218 (±1) | 6.17 (±0.1) | 0.477 (±0.02) |
Fig. 5. Experimental impedance spectra for Ti-3Cu alloy, the passivated film formed by CV in PBS solution with various BSA concentrations (0-9?g L-1), pH?=?7.4?±?0.2 at 37?°C. (a) Nyquist plot; (b and c) Bode plots; and (d) Equivalent electrical circuit.
Parameters | 0 g L-1 BSA | 1 g L-1 BSA | 3 g L-1 BSA | 6 g L-1 BSA |
---|---|---|---|---|
Rs, (Ω cm2) | 21.71 (±0.1) | 25.91 (±0.5) | 27.4 (±0.5) | 27.9 (±0.1) |
Ro, Outer layer (Ω cm2) | 1.9 × 10 4 (±0.5) | 2.7 × 10 4 (±0.3) | 5.2 × 10 4 (±0.13) | 5.3 × 10 4 (±0.3) |
Ri, Inner layer (Ω cm2) | 4.5 × 10 6 (±0.3) | 4.62 × 10 6 (±0.4) | 4.65 × 10 6 (±0.3) | 4.69 × 10 6 (±0.3) |
ZCPE (o), outer layer (μF cm-2) | 12.0 (±0.1) | 16.5 (±1.1) | 18.0 (±1.1) | 19.5 (±1.2) |
ZCPE (i), inner layer (μF cm-2) | 16.0 (±1.2) | 17.3 (±1.2) | 17.7 (±1.3) | 19.0 (±1.2) |
n1, outer layer | 0.87 | 0.88 | 0.88 | 0.89 |
n2, inner layer | 0.98 | 0.96 | 0.97 | 0.96 |
Chi- squared, χ 2 | 2.5 × 10 -3 | 2.2 × 10 -3 | 2.1 × 10 -3 | 2.6 × 10 -3 |
Table 3 Equivalent circuit parameters of Ti-3Cu alloy in the phosphate-buffered saline solution with different concentrations of bovine serum albumin protein.
Parameters | 0 g L-1 BSA | 1 g L-1 BSA | 3 g L-1 BSA | 6 g L-1 BSA |
---|---|---|---|---|
Rs, (Ω cm2) | 21.71 (±0.1) | 25.91 (±0.5) | 27.4 (±0.5) | 27.9 (±0.1) |
Ro, Outer layer (Ω cm2) | 1.9 × 10 4 (±0.5) | 2.7 × 10 4 (±0.3) | 5.2 × 10 4 (±0.13) | 5.3 × 10 4 (±0.3) |
Ri, Inner layer (Ω cm2) | 4.5 × 10 6 (±0.3) | 4.62 × 10 6 (±0.4) | 4.65 × 10 6 (±0.3) | 4.69 × 10 6 (±0.3) |
ZCPE (o), outer layer (μF cm-2) | 12.0 (±0.1) | 16.5 (±1.1) | 18.0 (±1.1) | 19.5 (±1.2) |
ZCPE (i), inner layer (μF cm-2) | 16.0 (±1.2) | 17.3 (±1.2) | 17.7 (±1.3) | 19.0 (±1.2) |
n1, outer layer | 0.87 | 0.88 | 0.88 | 0.89 |
n2, inner layer | 0.98 | 0.96 | 0.97 | 0.96 |
Chi- squared, χ 2 | 2.5 × 10 -3 | 2.2 × 10 -3 | 2.1 × 10 -3 | 2.6 × 10 -3 |
Fig. 6. ToF-SIMS and ARXPS spectrum of an outer layer of Ti-3Cu alloy with and without protein addition. (a-b) Positive secondary ions detected; (c) Negative secondary ions detected and (d) ARXPS C 1s detail spectrum of the surface.
Fig. 7. (a, b) Ti 2p and Cu 2p ARXPS spectra of 6?g L-1 BSA protein solution of Ti3Cu alloy and (c) depth profile of Cu cation fraction of 0 and 6?g L-1 BSA protein of Ti3Cu alloy.
Fig. 8. (a) Surface charge density of BSA in PBS pH 7.4?±?0.2 at 37?°C on Ti-3Cu alloy and (b) plot showing the dependence of surface concentration on the protein concentration in the bulk solution.
[1] | E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, Mater. Sci. Eng. C (2013). |
[2] |
S. Prasad, M. Ehrensberger, M.P. Gibson, H. Kim, E.A. Monaco, J. Oral Biosci. 57 (2015) 192-199.
DOI URL |
[3] | W.F. Oliveira, P.M.S. Silva, R.C.S. Silva, G.M.M. Silva, G. Machado, L.C.B.B. Coelho, M.T.S. Correia, J. Hosp. Infect 98 (2017). |
[4] | E.M. Hetrick, M.H. Schoenfisch, Chem. Soc. Rev, (2006) 780-789. |
[5] |
L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, J. Mater. Sci. Technol. 30 (2014) 699-705.
DOI URL |
[6] |
L. Ren, K. Yang, J. Mater. Sci. Technol. 29 (2013) 1005-1010.
DOI URL |
[7] |
S. Jin, L. Ren, K. Yang, J. Mater. Sci. Technol. 32 (2016) 835-839.
DOI URL |
[8] |
R. Liu, Y. Tang, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, K. Yang, Dent. Mater. 34 (2018) 1112-1126.
DOI URL |
[9] | Z. Ma, M. Li, R. Liu, L. Ren, Y. Zhang, H. Pan, Y. Zhao, K. Yang, J. Mater. Sci. Mater. Med. (2016). |
[10] |
S.K. Kolawole, W. Hai, S. Zhang, Z. Sun, M.A. Siddiqui, I. Ullah, W. Song, F. Witte, K. Yang, J. Mater. Sci, Technol. 50 (2020) 31-43.
DOI URL |
[11] |
R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 6 (2016) 29985.
DOI URL |
[12] |
L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, K. Yang, J. Mater. Sci. Technol. 30 (2014) 699-705.
DOI URL |
[13] |
Z. E, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, Mater. Sci. Eng. C 33 (2013) 4280-4287.
DOI URL |
[14] | R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 29985 (2016) 6. |
[15] |
E. Zhang, X. Wang, M. Chen, B. Hou, Mater. Sci. Eng. C 69 (2016) 1210-1221.
DOI URL |
[16] |
M. Talha, Y. Ma, P. Kumar, Y. Lin, A. Singh, Colloids Surf. B Biointerfaces 176 (2019) 494-506.
DOI URL |
[17] | D.R. Jackson, S. Omanovic, S.G. Roscoe, Langmuir Am. Chem. Soc. 16 (2000) 5449-5457. |
[18] |
P. Silva-Bermudez, S.E. Rodil, Surf. Coat. Technol. 233 (2013) 147-158.
DOI URL |
[19] | H.P. Felgueiras, J.C. Antunes, M.C.L. Martins, M.A. Barbosa, Peptides and Proteins As Biomaterials for Tissue Regeneration and Repair, Woodhead Publishing, 2018, pp. 1-27. |
[20] |
Y. Hedberg, X. Wang, J. Hedberg, M. Lundin, E. Blomberg, I. Odnevall Wallinder, J. Mater. Sci. Mater. Med 24 (2013) 1015-1033.
DOI URL |
[21] |
M.A. Khan, R.L. Williams, D.F. Williams, Biomaterials 20 (2002) 631-637.
DOI URL |
[22] |
A. Jahanban-Esfahlan, A. Ostadrahimi, R. Jahanban-Esfahlan, L. Roufegarinejad, M. Tabibiazar, R. Amarowicz, Int. J. Biol. Macromol. 138 (2019) 602-617.
DOI PMID |
[23] | L. Roufegarinejad, A. Jahanban-Esfahlan, S. Sajed-Amin, V. Panahi-Azar, M. Tabibiazar, J. Mol. Recognit. 31 (2018) 1-6. |
[24] | A. Jahanban-Esfahlan, L. Roufegarinejad, R. Jahanban-Esfahlan, M. Tabibiazar, R. Amarowicz, Talanta 207(2020). |
[25] |
A. Jahanban-Esfahlan, V. Panahi-Azar, S. Sajedi, Biopolymers 103 (2015) 638-645.
DOI PMID |
[26] |
L. Roufegarinejad, R. Amarowicz, A. Jahanban-Esfahlan, J. Biomol. Struct. Dyn. 37 (2019) 2766-2775.
DOI PMID |
[27] |
A. Jahanban-Esfahlan, S. Davaran A.A. Moosavi-Movahedi, S. Dastmalchi, J. Iran. Chem. Soc. 14 (2017) 1527-1540.
DOI URL |
[28] |
A. Jahanban-Esfahlan, V. Panahi-Azar, S. Sajedi, Food Chem. 202 (2016) 426-431.
DOI PMID |
[29] |
J. Wang, S. Zhang, Z. Sun, H. Wang, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2336-2344.
DOI URL |
[30] |
C. Peng, Y. Zhao, S. Jin, J. Wang, R. Liu, H. Liu, W. Shi, S.K. Kolawole, L. Ren, B. Yu, K. Yang, ACS Appl. Mater. Interfaces 11 (2019) 125-136.
DOI URL |
[31] |
P. Ghods, O. Burkan Isgor, F. Bensebaa, D. Kingston, Corros. Sci. 58 (2012) 159-167.
DOI URL |
[32] |
Y.G. Lei, K.M. Ng, L.T. Weng, C.M. Chan, L. Li, Surf. Interface Anal. 35 (2003) 852-855.
DOI URL |
[33] | D.M. Brunette, P. Thomsen, P. Tengvall, M. Textor, Springer-Verlag Berlin Heidelberg, 2001, pp. 122-123,2001. |
[34] | J.A.F. Marcel, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE 2400 West Loop South, Houston, vol. 77027, 1974, pp. 213-222, and 384-392. |
[35] |
J. Li, S.J. Li, Y.L. Hao, R. Yang, Int. J. Hydrogen Energy 39 (2014) 17452-17459.
DOI URL |
[36] |
W.R. Osório, A. Cremasco, P.N. Andrade, A. Garcia, R. Caram, Electrochim. Acta 55 (2010) 759-770.
DOI URL |
[37] | J.E.G. González, J.C. Mirza-Rosca, J.Electroanal. Chem. 471 (1999) 109-115. |
[38] |
M.E.P. Souza, L. Lima, C.R.P. Lima, C.A.C. Zavaglia, C.M.A. Freire, J. Mater. Sci. Mater. Med. 20 (2009) 549-552.
DOI URL |
[39] |
Y. Li, J. Xu, Electrochim. Acta 233 (2017) 151-166.
DOI URL |
[40] |
A. Cremasco, W.R. Osório, C.M.A. Freire, A. Garcia, R. Caram, Electrochim. Acta 53 (2008) 4867-4874.
DOI URL |
[41] | Measurement Services Division of the National Institute of Standards and Technology (NIST), 2012, pp. 20899, 20899. |
[42] |
R.P. Vasquez, Surf. Sci. Spectra 5 (1998) 262-266.
DOI URL |
[43] |
R.P. Vasquez, Surf. Sci. Spectra 5 (1998) 267-272.
DOI URL |
[44] |
R.P. Vasquez, Surf. Sci. Spectra 5 (1998) 257-261.
DOI URL |
[45] |
L. Zhang, D.D. Macdonald, Electrochim. Acta 43 (1998) 2661-2671.
DOI URL |
[46] |
E.B. Marino, P.A.P. Nascente, S.R. Biaggio, Thin Solid Films 468 (2004) 109-112.
DOI URL |
[47] |
X. Yang, C. Du, H. Wan, Z. Liu, X. Li, Appl. Surf. Sci. 458 (2018) 198-209.
DOI URL |
[48] | D. Landolt, Corrosion and Surface Chemistry of Metals, CRC Press Taylor & Francis Group, 2007, pp. 15-54. |
[49] | L.L. SHREIR, Corrosion, Volume 1: Metal/Environment Reactions, second, Elsevier Ltd 1976, pp. 1, 52-1:113. |
[50] | L.L. Shreir, Corrosion, Volume 1: Metal/Environment Reactions, Elsevier Ltd, 1976, pp. 9, 57-9:70. |
[51] |
L.B.A. Fabiana, Y. Oliva, Oscaldo R. Camara, J. Electroanalyt. Chem. 633 (2009) 19-34.
DOI URL |
[52] |
J. Colloid Interface Sci. 160 (1993) 243-251.
DOI URL |
[53] | S. Karimi, T. Nickchi, A. Alfantazi, 53 (2011) 3262-3272. |
[54] | N.J. Hallab, A. Skipor, J.J. Jacobs, J. Biomed. Mater. Res. - Part A 65 (2003) 311-318. |
[55] |
X. Cheng, S.G. Roscoe, Biomaterials 26 (2005) 7350-7356.
DOI URL |
[56] | E. Almanza, M.J. Pérez, N.A. Rodríguez, L.E. Murr, J. Mater. Res. Technol, (2017). |
[57] |
S.L. De Assis, S. Wolynec, I. Costa, Electrochim. Acta 51 (2006) 1815-1819.
DOI URL |
[58] | D. Baehre, A. Ernst, K. Weißhaar, H. Natter, M. Stolpe, R. Busch, Procedia CIRP (2016) 137-142. |
[59] |
Y. Hedberg, M.E. Karlsson, Z. Wei, M. ˇZnidarˇsiˇc, I. Odnevall Wallinder, J. Hedberg, Corrosion 73 (2017) 1423-1436.
DOI URL |
[60] |
Y.S. Hedberg, I. Odnevall Wallinder, Biointerphases 11 (2016), 018901.
DOI URL |
[61] | M. Pourbaix, Lectures on Electrochemical Corrosion, Plenum Press, New York-London, 1973, pp. 83-182. |
[62] | P. Atkins, Physical Chemistry, ninth edit, W.H Freeman and Company, New York, 2010, pp. 928-929. |
[63] | Allen J. Bard, Larry R. Faulkner, Electrochemical Methods, Fundamentals and Applications, second edi, JOHN WILEY & SONS, INC.. 2001. |
[1] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[2] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[3] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[4] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[5] | Bright O. Okonkwo, Hongliang Ming, Jianqiu Wang, En-Hou Han, Ehsan Rahimi, Ali Davoodi, Saman Hosseinpour. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld [J]. J. Mater. Sci. Technol., 2021, 78(0): 38-50. |
[6] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[7] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[8] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[9] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[10] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[11] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[12] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[13] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[14] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
[15] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||