J. Mater. Sci. Technol. ›› 2021, Vol. 80: 139-149.DOI: 10.1016/j.jmst.2020.10.080
• Research Article • Previous Articles Next Articles
Wendao Lia, Longfei Lia,*(), Changdong Weib, Ji-Cheng Zhaoc, Qiang Fenga,*(
)
Received:
2020-08-26
Accepted:
2020-10-03
Published:
2020-12-24
Online:
2020-12-24
Contact:
Longfei Li,Qiang Feng
About author:
qfeng@skl.ustb.edu.cn (Q. Feng).Wendao Li, Longfei Li, Changdong Wei, Ji-Cheng Zhao, Qiang Feng. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches[J]. J. Mater. Sci. Technol., 2021, 80: 139-149.
Fig. 1. Calculated vertical sections based on Co-20Ni-7Al-8W-1Ta-4Ti: (a) 1:1 substituting Ni for Co; (b) increasing Ni and W from 20 at.% to 40 at.% and 0 at.% to 8 at.%, respectively; (c) 1:1 substituting Cr for Co; and (d) increasing Cr and decreasing W from 0 at.% to 15 at.% and 8 at.% to 0 at.%, respectively.
Fig. 2. (a) Cross-sectional schematic of the overall diffusion multiple, the diffusion couples investigated in this study are marked with yellow circles; and (b) schematic of the pure Ni cover that can prevent the oxidation during heat treatment.
Co | Ni | Al | W | Ti | Ta | Cr | |
---|---|---|---|---|---|---|---|
Base | 60 | 20 | 7 | 8 | 4 | 1 | 0 |
40Ni | 40 | 40 | 7 | 8 | 4 | 1 | 0 |
0W | 68 | 20 | 7 | 0 | 4 | 1 | 0 |
15Cr0W | 53 | 20 | 7 | 0 | 4 | 1 | 15 |
Table 1 Nominal compositions (at.%) of the alloys in the investigated diffusion multiple.
Co | Ni | Al | W | Ti | Ta | Cr | |
---|---|---|---|---|---|---|---|
Base | 60 | 20 | 7 | 8 | 4 | 1 | 0 |
40Ni | 40 | 40 | 7 | 8 | 4 | 1 | 0 |
0W | 68 | 20 | 7 | 0 | 4 | 1 | 0 |
15Cr0W | 53 | 20 | 7 | 0 | 4 | 1 | 15 |
Fig. 4. SEM-BSE images of typical microstructures of the initial alloys in the investigated diffusion-multiple after being aged at 1000 °C for 1000 h: (a) Base; (b) 40Ni; (c) 0W; and (d) 15Cr0W.
Alloy | Phase constituent | γ′ volume fraction | ||
---|---|---|---|---|
Exp. | Cal. | Exp. | Cal. | |
Base | γ+γ′ | γ+γ′ | 86.6 | 70.7 |
40Ni | γ+γ′+χ | γ+γ′ | 78.6 | 67.4 |
0W | γ | γ | 0 | 0 |
15Cr0W | γ+γ′ | γ+β | 16.9 | 0 |
Table 2 Experimental and calculated phase constituents and γ′ volume fractions (%) of the initial alloys in the investigated diffusion multiple after being aged at 1000 °C for 1000 h.
Alloy | Phase constituent | γ′ volume fraction | ||
---|---|---|---|---|
Exp. | Cal. | Exp. | Cal. | |
Base | γ+γ′ | γ+γ′ | 86.6 | 70.7 |
40Ni | γ+γ′+χ | γ+γ′ | 78.6 | 67.4 |
0W | γ | γ | 0 | 0 |
15Cr0W | γ+γ′ | γ+β | 16.9 | 0 |
Fig. 5. SEM-BSE images of typical microstructures of the diffusion-couples in the investigated diffusion-multiple after being aged at 1000 °C for 1000 h: (a) Base-40Ni (including the SADP of the χ phase); (b) 0W-40Ni; (c) Base-0W; and (d) Base-15Cr0W.
Fig. 6. SEM-SE images with high magnification of typical microstructures of Base-15Cr0W diffusion-couple: (a) the base alloy side; and (b) the 15Cr0W side.
Fig. 7. The experimental concentration profiles for the investigated diffusion-couples after heat treatment at 1250 °C for 24 h and 1000 °C for 1000 h: (a) Base-40Ni; (b) 0W-40Ni; (c) Base-0W; and (d) Base-15Cr0W. All the compositions were measured using EPMA.
Fig. 9. Elemental partitioning behavior of Base-40Ni diffusion couple at 1000 °C, analyzed by high-throughput thermodynamic calculation using the compositional data of this diffusion-couple. (a) and (b) are the elemental concentration profiles of γ and γ′ phases, respectively; and (c) and (d) are the elemental partitioning coefficients as a function of diffusion distance and Ni content, respectively.
Fig. 10. Partitioning coefficients at 1000 °C as a function of W and Cr calculated using the compositional data for (a) Base-0W and (b) Base-15Cr0W diffusion-couples, respectively.
Fig. 11. The comparison of the calculated and experimental concentration profiles for the Base-40Ni diffusion-couple after heat treatment at 1250 °C for 24 h and 1000 °C for 1000 h. Calculated and experimental profiles are represented by lines and symbols, respectively.
Diffusion-couple | Phase transition | Co | Ni | Al | W | Ti | Ta |
---|---|---|---|---|---|---|---|
Base-40Ni | γ+γ′ → γ+γ′+χ | 41.4 | 38.1 | 8.0 | 7.2 | 4.3 | 1.0 |
0W-40Ni | γ → γ+γ′ | 64.2 | 23.7 | 6.0 | 1.1 | 4.0 | 0.9 |
γ+γ′ → γ+γ′+χ | 42.9 | 38.8 | 6.1 | 7.3 | 4.0 | 0.9 | |
Base-0W | γ+γ′ → γ | 68.2 | 18.7 | 7.3 | 1.2 | 3.9 | 0.6 |
Table 3 Critical compositions (at.%) for the phase transitions in Base-40Ni, 0W-40Ni and Base-0W diffusion-couples at 1000 °C for 1000 h.
Diffusion-couple | Phase transition | Co | Ni | Al | W | Ti | Ta |
---|---|---|---|---|---|---|---|
Base-40Ni | γ+γ′ → γ+γ′+χ | 41.4 | 38.1 | 8.0 | 7.2 | 4.3 | 1.0 |
0W-40Ni | γ → γ+γ′ | 64.2 | 23.7 | 6.0 | 1.1 | 4.0 | 0.9 |
γ+γ′ → γ+γ′+χ | 42.9 | 38.8 | 6.1 | 7.3 | 4.0 | 0.9 | |
Base-0W | γ+γ′ → γ | 68.2 | 18.7 | 7.3 | 1.2 | 3.9 | 0.6 |
Fig. 13. Calculated isothermal section at 1000 °C through pseudo-ternary Co-W-Ni at constant 7Al-1Ta-4Ti superimposed with the measured compositions and corresponding phase constituents of the Base-40Ni, Base-0W and 0W-40Ni diffusion couples.
[1] |
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Karinuma, K. Ishida, Science 312 (2006) 90-91.
PMID |
[2] |
K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Mater. Trans. 49 (2008) 1474-1479.
DOI URL |
[3] | F. Xue, M. Wang, Q. Feng, in: E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman (Eds.), Superalloys 2012, TMS, Champion, PA, 2012, pp. 813-821. |
[4] |
F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, Q. Feng, Mater. Lett. 112 (2013) 215-218.
DOI URL |
[5] |
T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, K. Ishida, Intermetallics 32 (2013) 274-283.
DOI URL |
[6] |
S. Meher, H.Y. Yan, S. Nag, D. Dye, R. Banerjee, Scr. Mater. 67 (2012) 850-853.
DOI URL |
[7] |
S. Meher, R. Banerjee, Intermetallics 49 (2014) 138-142.
DOI URL |
[8] |
I. Povstugar, P.P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, D. Raabe, Acta Mater. 78 (2014) 78-85.
DOI URL |
[9] |
S. Meher, L. Carroll, T. Pollock, M. Carroll, Scr. Mater. 113 (2016) 185-189.
DOI URL |
[10] |
I. Povstugar, C. Zenk, R. Li, P.-P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, D. Raabe, Mater. Sci. Technol. 32 (2016) 220-225.
DOI URL |
[11] |
L. Wang, M. Oehring, Y. Li, L. Song, Y. Liu, A. Stark, U. Lorenz, F. Pyczak, J. Alloys. Compd. 787 (2019) 594-605.
DOI URL |
[12] |
W. Li, L. Li, S. Antonov, Q. Feng, Mater. Des. 180 (2019) 107912.
DOI URL |
[13] |
W. Li, L. Li, S. Antonov, F. Lu, Q. Feng, J. Alloys. Compd. 826 (2020) 154182.
DOI URL |
[14] |
D.S. Ng, D.-W. Chung, J.P. Toinin, D.N. Seidman, D.C. Dunand, E.A. Lass, Mater. Sci. Eng. A 778 (2020) 139108.
DOI URL |
[15] |
E.A. Lass, D.J. Sauza, D.C. Dunand, D.N. Seidman, Acta Mater. 147 (2018) 284-295.
DOI URL |
[16] | N. Volz, C.H. Zenk, R. Cherukuri, T. Kalfhaus, M. Weiser, S.K. Makineni, C. Betzing, M. Lenz, B. Gault, S.G. Fries, Metall. Mater. Trans. A (2018) 1-11. |
[17] |
S. Kobayashi, Y. Tsukamoto, T. Takasugi, Intermetallics 31 (2012) 94-98.
DOI URL |
[18] |
E. Lass, M. Williams, C. Campbell, K.W. Moon, U. Kattner, J. Phase Equilib, Diffus. 35 (2014) 711-723.
DOI URL |
[19] |
Y. Li, F. Pyczak, M. Oehring, L. Wang, J. Paul, U. Lorenz, Z. Yao, J. Alloys. Compd. 729 (2017) 266-276.
DOI URL |
[20] |
S.C.H. Llewelyn, K.A. Christofidou, V.J. Araullo-Peters, N.G. Jones, M.C. Hardy, E.A. Marquis, H.J. Stone, Acta Mater. 131 (2017) 296-304.
DOI URL |
[21] |
F. Xue, H.J. Zhou, Q. Feng, JOM 66 (2014) 2486-2494.
DOI URL |
[22] |
P. Pandey, S.K. Makineni, A. Samanta, A. Sharma, S.M. Das, B. Nithin, C. Srivastava, A.K. Singh, D. Raabe, B. Gault, K. Chattopadhyay, Acta Mater. 163 (2019) 140-153.
DOI |
[23] |
C.H. Zenk, S. Neumeier, N.M. Engl, S.G. Fries, O. Dolotko, M. Weiser, S. Virtanen, M. Göken, Scr. Mater. 112 (2016) 83-86.
DOI URL |
[24] |
E.A. Lass, Metall. Mater. Trans. A 48 (2017) 1-17.
DOI URL |
[25] |
I. Bantounas, B. Gwalani, T. Alam, R. Banerjee, D. Dye, Scr. Mater. 163 (2019) 44-50.
DOI URL |
[26] |
P.J. Bocchini, C.K. Sudbrack, D.J. Sauza, R.D. Noebe, D.N. Seidman, D.C. Dunand, Mater. Sci. Eng. A 700 (2017) 481-486.
DOI URL |
[27] |
H.Y. Yan, V.A. Vorontsov, D. Dye, Corros. Sci. 83 (2014) 382-395.
DOI URL |
[28] |
L. Klein, Y. Shen, M.S. Killian, S. Virtanen, Corros. Sci. 53 (2011) 2713-2720.
DOI URL |
[29] | H. Zhou, W. Li, F. Xue, L. Zhang, X. Qu, Q. Feng, Alloying effects on microstructural stability and γ′ phase nano-hardness in Co-Al-W-Ta-Ti-base superalloys, in: Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys, Hoboken, NJ, USA, 2016, pp. 981-990. |
[30] |
C.A. Stewart, S.P. Murray, A. Suzuki, T.M. Pollock, C.G. Levi, Mater. Des. 189 (2020), 108445.
DOI URL |
[31] |
S.K. Makineni, B. Nithin, K. Chattopadhyay, Acta Mater. 85 (2015) 85-94.
DOI URL |
[32] |
M. Chen, C.Y. Wang, J. Appl. Phys. 107 (2010), 093705-093705-093705.
DOI URL |
[33] |
W.W. Xu, S.L. Shang, C.P. Wang, T.Q. Gang, Y.F. Huang, L.J. Chen, X.J. Liu, Z.K. Liu, Mater. Des. 142 (2018) 139-148.
DOI URL |
[34] | J. Guo, Materials Science and Engineering for Superalloys, Science Press, Beijing, 2008. |
[35] |
J.C. Zhao, J. Mater. Res 16 (2001) 1565-1578.
DOI URL |
[36] |
J.C. Zhao, M.R. Jackson, L.A. Peluso, Mater. Sci. Eng. A 372 (2004) 21-27.
DOI URL |
[37] | J.-C. Zhao, Adv.Eng. Mater. 3 (2001) 143-147. |
[38] | J.-C. Zhao, Prog.Mater. Sci. 51 (2006) 557-631. |
[39] |
C.E. Campbell, J.C. Zhao, M.F. Henry, J. Phase Equilib. Diffus. 25 (2004) 6-15.
DOI URL |
[40] |
T. Keil, E. Bruder, K. Durst, Mater. Des. 176 (2019) 107816.
DOI URL |
[41] |
C.E. Campbell, J.C. Zhao, M.F. Henry, Mater. Sci. Eng. A 407 (2005) 135-146.
DOI URL |
[42] |
J.C. Zhao, M.F. Henry, Adv. Eng. Mater. 4 (2002) 501-508.
DOI URL |
[43] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. TTechnol. 44 (2020) 171-190. |
[44] | Q. Luo, C. Zhai, D. Sun, W. Chen, Q. Li, J. Mater. Sci. Technol. 35 (2019) 2115-2120. |
[45] |
S. Chen, W. Cao, C. Zhang, J. Zhu, F. Zhang, Q. Li, J. Zhang, Calphad 55 (2016) 63-68.
DOI URL |
[46] | R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006. |
[47] |
M. Jin, N. Miao, W. Zhao, J. Zhou, Q. Du, Z. Sun, Comput. Mater. Sci. 148 (2018) 27-37.
DOI URL |
[48] |
H.Y. Yan, V.A. Vorontsov, D. Dye, Intermetallics 48 (2014) 44-53.
DOI URL |
[49] |
C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, M. Göken, Acta Mater. 135 (2017) 244-251.
DOI URL |
[50] |
Y. Chen, C. Wang, J. Ruan, S. Yang, T. Omori, R. Kainuma, K. Ishida, J. Han, Y. Lu, X. Liu, Acta Mater. 188 (2020) 652-664.
DOI URL |
[51] |
W.W. Xu, J.J. Han, Y. Wang, C.P. Wang, X.J. Liu, Z.K. Liu, Acta Mater. 61 (2013) 5437-5448.
DOI URL |
[52] | A. Breidi, J. Allen, A. Mottura, Phys. Status Solidi B-Basic Solid State Phys 254 (2017) 1600839. |
[53] | Y. Zhao, J. Zhang, F. Song, M. Zhang, Y. Luo, H. Zhao, D. Tang, Prog. Nat. Sci.: Mater.Int. 30 (2020) 371-381. |
[1] | Sun Jingxia, Liu Jinlai, Liu Lirong, Zhou Yizhou, Li Jinguo, Sun Xiaofeng. Effects of Al on microstructural stability and related stress-rupture properties of a third-generation single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2537-2542. |
[2] | X.G. Liu, L. Wang, L.H. Lou, J. Zhang. Effect of Mo Addition on Microstructural Characteristics in a Re-containing Single Crystal Superalloy [J]. J. Mater. Sci. Technol., 2015, 31(2): 143-147. |
[3] | K.Y.Cheng, D.H.Kim, Y.S.Yoo, C.Y.Jo, T.Jin, Z.Q.Hu. Microstructural Stability of a Single Crystal Superalloy DD8 during Thermal Exposure [J]. J Mater Sci Technol, 2008, 24(01): 127-130. |
[4] | Feng WANG, Yuansheng JIN, Dunyuan HU, Jishan ZHANG. Effect of Precipitating Phases on Tensile Strength and Microstructural Stability of a Spray-Deposited Al-Si-Fe-Mn-Cu-Mg Alloy [J]. J Mater Sci Technol, 2004, 20(01): 78-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||