J. Mater. Sci. Technol. ›› 2021, Vol. 87: 216-233.DOI: 10.1016/j.jmst.2021.01.048
• Research Article • Previous Articles Next Articles
Peng-fei Hea, Guo-zheng Maa,*(), Hai-dou Wanga, Ling Tanga,b, Ming Liua, Yu Baic, Yu Wangd, Jian-jiang Tange, Dong-yu Hea, Hai-chao Zhaoa, Tian-yang Yua
Received:
2020-08-31
Revised:
2020-12-28
Accepted:
2021-01-19
Published:
2021-10-10
Online:
2021-03-17
Contact:
Guo-zheng Ma
About author:
* E-mail address: magz0929@163.com (G.-z. Ma).Peng-fei He, Guo-zheng Ma, Hai-dou Wang, Ling Tang, Ming Liu, Yu Bai, Yu Wang, Jian-jiang Tang, Dong-yu He, Hai-chao Zhao, Tian-yang Yu. Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying[J]. J. Mater. Sci. Technol., 2021, 87: 216-233.
Coating ID at Parameter ID | Ar (splm) | H2 (splm) | Total gas flow rate (Ar+H2, splm) | H2 percentage (%) | U (V) | I (A) | Substrate temperature (℃) | Spraying distance (mm) |
---|---|---|---|---|---|---|---|---|
Coat.-1 at Par.-1 | 145 | 19.3 | 164.3 | 11.75 | 150 | 450 | 80 ± 20 | 115 |
Coat.-2 at Par.-2 | 100 | 25.5 | 125.5 | 20.32 | 150 | 450 | 80 ± 20 | 115 |
Coat.-3 at Par.-3 | 65 | 30.7 | 95.7 | 32.08 | 150 | 450 | 80 ± 20 | 115 |
Coat.-4 at Par.-4 | 100 | 25.5 | 125.5 | 20.32 | 150 | 450 | 230 ± 30 | 115 |
Table 1 Process parameters for depositing four representative hypereutectic Al-Si-Cu coatings.
Coating ID at Parameter ID | Ar (splm) | H2 (splm) | Total gas flow rate (Ar+H2, splm) | H2 percentage (%) | U (V) | I (A) | Substrate temperature (℃) | Spraying distance (mm) |
---|---|---|---|---|---|---|---|---|
Coat.-1 at Par.-1 | 145 | 19.3 | 164.3 | 11.75 | 150 | 450 | 80 ± 20 | 115 |
Coat.-2 at Par.-2 | 100 | 25.5 | 125.5 | 20.32 | 150 | 450 | 80 ± 20 | 115 |
Coat.-3 at Par.-3 | 65 | 30.7 | 95.7 | 32.08 | 150 | 450 | 80 ± 20 | 115 |
Coat.-4 at Par.-4 | 100 | 25.5 | 125.5 | 20.32 | 150 | 450 | 230 ± 30 | 115 |
Fig. 1. (a) OM image and (b) corresponding SEM images of the cross-sectional of Al-25Si-4Cu-0.9 Mg powder after Keller’s etching for 15 s. (c) Enlarged view of the rectangle in (b). (d) Size distribution of powder. (e) Size distribution of Si phase (including primary Si and short-fibrous eutectic Si) in the powder. (f) EDS spectrum of the spot in (c).
Parameter ID | Surface temperature (℃) | Velocity (m/s) | Estimated M.I. | Description(b) |
---|---|---|---|---|
Par.-1 | 2112.87 ± 30.21 | 626.61 ± 14.90 | 2.16*W | L-T & H-V |
Par.-2(a) | 2479.58 ± 12.16 | 482.35 ± 33.55 | 3.56*W | M-T & M-V |
Par.-3 | 2586.45 ± 10.98 | 370.50 ± 30.82 | 4.93*W | H-T & L-V |
Table 2 The measured particles surface temperature, velocity, and M.I. at three difference process conditions.
Parameter ID | Surface temperature (℃) | Velocity (m/s) | Estimated M.I. | Description(b) |
---|---|---|---|---|
Par.-1 | 2112.87 ± 30.21 | 626.61 ± 14.90 | 2.16*W | L-T & H-V |
Par.-2(a) | 2479.58 ± 12.16 | 482.35 ± 33.55 | 3.56*W | M-T & M-V |
Par.-3 | 2586.45 ± 10.98 | 370.50 ± 30.82 | 4.93*W | H-T & L-V |
Fig. 2. OM images of the cross-sectional of the four typical coatings: (a1) Coat.-1, (a2) enlarged view of rectangle in (a1), (a3) etched morphology of (a2); (b1) Coat.-2; (b2) enlarged view of rectangle in (b1); (b3) etched morphology of (b2); (c1) Coat.-3; (c2) enlarged view of rectangle in (c1); (c3) etched morphology of (c2); (d1) Coat.-4; (d2) enlarged view of rectangle in (d1); (d3) etched morphology of (d2). Note that green and yellow arrows in (a2-a3) point to eutectic Al/Si and boundaries of UM particles, respectively; black arrows in (b2, b3) and (c, c3) indicate that few UM primary Si still exist in Coat.-2 and Coat.-3, respectively.
Fig. 3. SEM micrographs of three typical regions: (a1) UM particle in the coating showing rod-like eutectic Si and coarse primary Si; (a2) PM region showing sub-μm Si phase; (b1) FM region showing featureless (FL) zone; (b2) enlarged view of the rectangle in (b1) showing ultrafine (UF) zone; (c1) Overheated region; (c2) enlarged view of rectangle in (c1). Note that (a2), (b2), and (c2) were captured at the same magnification to make a visualized comparison of Si phase with different morphologies.
Fig. 4. Size distributions of Si phase in the four typical coatings. Considering that the polygonal primary Si phase in the UM region from Coat.-1 is similar to that in feedstock, and the fractions of PM regions from Coat.-2, Coat.-3 and Coat.-4 are no more than 1.0 %, the Si phase size in the above mentioned regions is not plotted in the figure. And the corresponding values in the four coatings are 1.90 ± 0.82 μm, 1.41 ± 0.54 μm, 1.53 ± 0.52 μm, and 1.67 ± 0.49 μm, respectively.
Fig. 5. OM images of the four typical coatings after Keller’s etching and the resulting color coded overlay image for the identifications of FM region, UM/PM Si phase, and pores: (a) Coat.-1; (b) Coat.-2; (c) Coat.-3; (d) Coat.-4.
Fig. 6. (a) Cross-sectional OM image of original powder shown here as a reference. Overall morphology of splats collected at (b) Par.-1 and (c) Par.-2. Schematic formation mechanism of (d) Splat-A, (e) Splat-B, and (f) Splat-C.
Fig. 7. OM image, corresponding 3D morphology, and cross-sectional profile along the center line of (a) Splat-A; (b) Splat-B; and (c) Splat-C. (d) SEM image containing Splat-B and Splat-C, (e) EDS mapping results of the square on the surface of Splat-C in (d), and (f) corresponding EDS results of spot 1-3 in.(d).
Parameter symbol | Parameter name | Unit | Parameter value |
---|---|---|---|
ρsub | Density of substrate | kg/m3 | 2620 |
ρsplat | Density of splat | kg/m3 | 2540 |
ksub | Thermal conductivity of substrate | W/(m K) | 160 |
ksplat | Thermal conductivity of splat | W/(m K) | 125 |
Cp_sub | Thermal capacity of substrate | J/(kg K) | 1200 |
Cp_splat | Thermal capacity of splat | J/(kg K) | 1100 |
Lsub | latent heat of substrate | J/kg | 499,200 |
Lsplat | latent heat of splat | J/kg | 644,300 |
Tm_sub | Melting point of substrate | K | 853 |
Tsolidus_splat | Solidus temperature of splat | K | 853 |
Tliquidus_splat | Liquidus temperature of splat | K | 1099 |
href_sub | Reference enthalpy of substrate at its reference temperature | J/kg | 0 |
Tref_sub | K | 853 | |
href_splat | Reference enthalpy of splat at its reference temperature | J/kg | 0 |
Tref_splat | K | 853 | |
thsub | Thickness of substrate in the computational domain | m | 6 × 10-6 |
thsplat | Thickness of each splat in the computational domain | m | 0.6 × 10-6 |
Table 3 Physical properties and other parameters used in the simulation calculations.
Parameter symbol | Parameter name | Unit | Parameter value |
---|---|---|---|
ρsub | Density of substrate | kg/m3 | 2620 |
ρsplat | Density of splat | kg/m3 | 2540 |
ksub | Thermal conductivity of substrate | W/(m K) | 160 |
ksplat | Thermal conductivity of splat | W/(m K) | 125 |
Cp_sub | Thermal capacity of substrate | J/(kg K) | 1200 |
Cp_splat | Thermal capacity of splat | J/(kg K) | 1100 |
Lsub | latent heat of substrate | J/kg | 499,200 |
Lsplat | latent heat of splat | J/kg | 644,300 |
Tm_sub | Melting point of substrate | K | 853 |
Tsolidus_splat | Solidus temperature of splat | K | 853 |
Tliquidus_splat | Liquidus temperature of splat | K | 1099 |
href_sub | Reference enthalpy of substrate at its reference temperature | J/kg | 0 |
Tref_sub | K | 853 | |
href_splat | Reference enthalpy of splat at its reference temperature | J/kg | 0 |
Tref_splat | K | 853 | |
thsub | Thickness of substrate in the computational domain | m | 6 × 10-6 |
thsplat | Thickness of each splat in the computational domain | m | 0.6 × 10-6 |
Fig. 10. Temperature (T), liquid fraction (β), and enthalpy (H) distributions of part of the substrate and three splats arriving one after the other at a constant time interval at (a) Par.-1, (b) Par.-2, (c) Par.-3, and (d) Par.-4.
Fig. 11. Time evolutions of the average (a) temperature (T), (b) liquid fraction (β), and (c) enthalpy (H) of Splat-1 at different process conditions.
Fig. 12. (a) XRD patterns of feedstock powder and the four coatings; enlarged pattern near peak of (b) Al (311) from 77.5° to 79.5° and (c) Si (111) from 26° to 31°. The insert two tables are the corresponding peaks information of Al (311) and (c) Si (111), respectively.
Fig. 13. α-Al lattice parameters (determined by Al (311) reflections) and corresponding Si solubilities of Al matrix from feedstock powder and coatings at different processing parameter.
Fig. 14. Williamson-Hall plots exhibiting peaks broadening as function of Bragg angle for the samples (The four most intensive reflection peaks of Al were utilized in the line broadening analysis).
Fig. 15. (a) Typical bright-field TEM image of the overheated Coat.-4. (b) SADP taken from the red-circle area in (a) confirming the presence of Al2Cu phase, the insert is the tetragonal crystal structure of Al2Cu phase; (c) corresponding HRTEM lattice image of Al2Cu phase, the inserts are the FFT and IFFT (after auto-correlation) images of the box area in (c). (d) Enlarged view of (a); (e) HRTEM image of the multiple twinned Si growing along <112 > Si, the insert is the IFFT image of the red square; (f) FFT image of the square in (e) and simulated diffraction patterns showing twins in Si.
Fig. 17. (a) Enlarged view of the white square in Fig. 17(a), and corresponding EDX-mapping of the constituent elements (b) Si, (c) Al, and (d) Cu. (e) HRTEM image of the white square in (a) showing precipitated nano-Al2Cu phase, the insert is FFT image of the red square in (e). (f) HRTEM image of the white-dashed square in (a), the insert is FFT image of the red square in (f) showing precipitation free Al matrix. (The supersaturated solid solution is abbreviated to SSSS).
Fig. 18. (a) Vickers hardness of the four coatings (Note that the error bar is plotted based on the standard deviation of the statistical results of microhardness for each coating). Representative OM image and corresponding 3D morphology of the 25g-load indentation at (b) FM region in Coat.-2/Coat.-3; (c) Pore-rich region in Coat.-3; (d) UM + PM regions in Coat.-1; (e) PM + FM regions in Coat.-1; (f) homogeneous region in Coat.-4. The dashed line in the respective OM image help to identify the indentation. Scale bars, 6.7 μm.
[1] |
M. Lou, D.R. White, A. Banerji, A.T. Alpas, Wear 432-433 (2019), 102921.
DOI URL |
[2] |
S.P. Dora, R.P. Tualsi, S. Chintada, R.P. Srinivasa, J. Alloys. Compd. 767 (2018) 988-993.
DOI URL |
[3] |
G. Hou, Y. An, X. Zhao, H. Zhou, J. Chen, S. Li, X. Liu, W. Deng, App. Surf. Sci. 411 (2017) 53-66.
DOI URL |
[4] |
M. Qian, D. Li, S.B. Liu, S.L. Gong, Corros. Sci. 52 (10) (2010) 3554-3560.
DOI URL |
[5] |
R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, E. Matykina, J. Therm. Spray Technol. 20 (3) (2010) 569-579.
DOI URL |
[6] |
K.H. Baik, H.K. Seok, H.S. Kim, P.S. Grant, J. Mater. Res. 20 (8) (2005) 2038-2045.
DOI URL |
[7] | M. Mrdak, B. Medjo, D. Veljić, M. Arsić, M. Rakin, Rev. Adv. Mater. Sci. 58 (2019) 75-81. |
[8] |
B. Torres, C. Taltavull, A.J. López, M. Campo, J. Rams, Surf. Coat. Technol. 261 (2015) 130-140.
DOI URL |
[9] |
S.R. Bakshi, V. Singh, S. Seal, A. Agarwal, Surf. Coat. Technol. 203 (10-11) (2009) 1544-1554.
DOI URL |
[10] |
M. Bao, C. Zhang, D. Lahiri, A. Agarwal, JOM 64 (6) (2012) 702-708.
DOI URL |
[11] |
A. Limpichaipanit, C. Banjongprasert, P. Jaiban, S. Jiansirisomboon, J. Therm. Spray Technol. 22 (2012) 18-26.
DOI URL |
[12] |
O. Sarikaya, S. Anik, S. Aslanlar, S.C. Okumus, E. Celik, Mater. Des. 28 (2007) 2443-2449.
DOI URL |
[13] |
O. Culha, C. Tekmen, M. Toparli, Y. Tsunekawa, Mater. Des. 31 (2010) 533-544.
DOI URL |
[14] | K. Nakata, M. Ushio, Surf. Coat. Technol. 142 (2001) 277-282. |
[15] |
K. Nakata, M. Ushio, Surf. Coat. Technol. 169-170 (2003) 443-446.
DOI URL |
[16] |
Z. Kang, K. Nakata, Y. Li, Surf. Coat. Technol. 201 (2007) 4999-5002.
DOI URL |
[17] |
P.-F. He, L. Tang, G.-Z. Ma, H.-D. Wang, S.-Y. Chen, M. Liu, S.-Y. Ding, Y. Bai, J.-J. Tang, D.-Y. He, App. Surf. Sci. 530 (2020), 147246.
DOI URL |
[18] |
C. Zhang, A.-F. Kanta, C.-X. Li, C.-J. Li, M.-P. Planche, H. Liao, C. Coddet, Surf. Coat. Technol. 204 (2009) 463-469.
DOI URL |
[19] |
L. Leblanc, C. Moreau, J. Therm. Spray Technol. 11 (2002) 380-386.
DOI URL |
[20] |
S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D.L. Gilmore, R.A. Neiser, Mater. Sci. Eng. A 348 (2003) 54-66.
DOI URL |
[21] |
V. Pershin, M. Lufitha, S. Chandra, J. Mostaghimi, J. Therm. Spray Technol. 12 (2003) 370-376.
DOI URL |
[22] |
A. Kulkarni, A. Vaidya, A. Goland, S. Sampath, H. Herman, Mater. Sci. Eng. A 359 (2003) 100-111.
DOI URL |
[23] | W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC press, Taylor and Francis, Boca Raton, 2014. |
[24] |
Y. Cai, R. Liang, L. Hou, J. Zhang, Mater. Sci. Eng. A 528 (2011) 4248-4254.
DOI URL |
[25] |
H. Yang, S. Ji, W. Yang, Y. Wang, Z. Fan, Mater. Sci. Eng. A 642 (2015) 340-350.
DOI URL |
[26] |
M. Vardelle, A. Vardelle, P. Fauchais, J. Therm. Spray Technol. 2 (1993) 79-91.
DOI URL |
[27] |
L. Zhao, Y. Bai, J.J. Tang, K. Liu, C.H. Ding, J.F. Yang, Z.H. Han, App. Surf. Sci. 286 (2013) 184-191.
DOI URL |
[28] |
M. Rajabi, A. Simchi, P. Davami, Mater. Sci. Eng., A 492 (2008) 443-449.
DOI URL |
[29] |
S. Karthikeyan, V. Balasubramanian, R. Rajendran, Ceram. Int. 40 (2014) 3171-3183.
DOI URL |
[30] |
X. Qiu, N.U.H. Tariq, L. Qi, Y.N. Zan, Y.J. Wang, J.Q. Wang, H. Du, T.Y. Xiong, J. Alloys. Compd. 780 (2019) 597-606.
DOI URL |
[31] |
Z. Zhu, S. Kamnis, S. Gu, Acta Mater. 90 (2015) 77-87.
DOI URL |
[32] |
B. Cantor, Mater. Sci. Forum 307 (1999) 143-152.
DOI URL |
[33] |
K.H. Baik, P.S. Grant, B. Cantor, Acta Mater. 52 (2004) 199-208.
DOI URL |
[34] |
C. Le Bot, S. Vincent, E. Meillot, F. Sarret, J.-P. Caltagirone, L. Bianchi, Surf. Coat. Technol. 268 (2015) 272-277.
DOI URL |
[35] | I.C. Coddet, Int. J. Heat Mass Transf 44 (2001) 1059-1106. |
[36] |
L. Li, X.Y. Wang, G. Wei, A. Vaidya, H. Zhang, S. Sampath, Thin Solid Films 468 (1-2) (2004) 113-119.
DOI URL |
[37] | J. Mohr, F. Miller, Numerical Simulations of an Aluminum-silicon Metal Alloy Thermal Energy Storage System, AIAA Scitech 2019 Forum, 2019. |
[38] |
J.A. Gan, C.C. Berndt, Metall. Mater. Trans. A 44 (2013) 4844-4858.
DOI URL |
[39] |
K. Liu, J. Tang, Y. Bai, Q. Yang, Y. Wang, Y. Kang, L. Zhao, P. Zhang, Z. Han, Mater. Sci. Eng. A 625 (2015) 177-185.
DOI URL |
[40] |
I.M. Lifshitz, V.V.J. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50.
DOI URL |
[41] |
E.D. Manson-Whitton, I.C. Stone, J.R. Jones, P.S. Grant, B. Cantor, Acta Mater. 50 (2002) 2517-2535.
DOI URL |
[42] | Z. Cai, C. Zhang, R. Wang, C. Peng, K. Qiu, N. Wang, Prog. Nat. Sci. -Mater. 26 (2016) 391-397. |
[43] |
L. Wang, X.Y. Qin, W. Xiong, L. Chen, M.G. Kong, Mater. Sci. Eng., A 434 (2006) 166-170.
DOI URL |
[44] |
T.J. Konno, R. Sinclair, Philos. Mag. B 66 (1992) 749-765.
DOI URL |
[45] |
C. Antonione, L. Battezzati, F. Marino, J. Mater. Sci. Lett. 5 (1986) 586-588.
DOI URL |
[46] |
S.C. Hardy, P.W. Voorhees, Metall. Trans. A 19 (1988) 2713-2721.
DOI URL |
[47] |
A. Bendijk, R. Delhez, L. Katgerman, T.H. De Keijser, E. Mittemeijer, N. Van Der Pers, J. Mater. Sci. 15 (1980) 2803-2810.
DOI URL |
[48] |
Y. Yang, Y. Li, W. Wu, D. Zhao, X. Liu, Mater. Sci. Eng. A 528 (18) (2011) 5723-5728.
DOI URL |
[49] |
S. Sampath, H. Herman, J. Therm. Spray Technol. 5 (1996) 445-456.
DOI URL |
[50] | P. Predecki, A.W. Mullendore, N.J. Grant, Trans. Met. Soc. AIME 233 (1965) 1581-1586. |
[51] |
S.-y. Chen, G.-z. Ma, H.-d. Wang, P.-f. He, Z. Liu, J. Alloys. Compd. 768 (2018) 789-799.
DOI URL |
[52] |
M. Rajabi, M. Vahidi, A. Simchi, P. Davami, Mater. Charact. 60 (2009) 1370-1381.
DOI URL |
[53] |
K.H. Baik, P.S. Grant, Mater. Sci. Eng., A 265 (1999) 77-86.
DOI URL |
[54] |
G. Williamson, W. Hall, Acta Metall. 1 (1953) 22-31.
DOI URL |
[55] |
O. Uzun, F. Yılmaz, U. Kölemen, N. Başman, J. Alloys. Compd. 509 (2011) 21-26.
DOI URL |
[56] |
Y. Jia, F. Cao, S. Scudino, P. Ma, H. Li, L. Yu, J. Eckert, J. Sun, Mater. Des. 57 (2014) 585-591.
DOI URL |
[57] |
E. Karaköse, M. Keskin, Mater. Des. 32 (2011) 4970-4979.
DOI URL |
[58] |
N. Ünlü, A. Genc, M. Öveçoğlu, N. Eruslu, F. Froes, J. Alloys. Compd. 322 (2001) 249-256.
DOI URL |
[59] |
J.H. Li, M.Z. Zarif, M. Albu, B.J. McKay, F. Hofer, P. Schumacher, Acta Mater. 72 (2014) 80-98.
DOI URL |
[60] |
X. Dong, H. Yang, X. Zhu, S. Ji, J. Alloys. Compd. 773 (2019) 86-96.
DOI URL |
[1] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[2] | Yuping Duan, Huifang Pang, Xin Wen, Xuefeng Zhang, Tongmin Wang. Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent [J]. J. Mater. Sci. Technol., 2021, 77(0): 209-216. |
[3] | Li Runxia, Liu Lanji, Zhang Lijun, Sun Jihong, Shi Yuanji, Yu Baoyi. Effect of Squeeze Casting on Microstructure and Mechanical Properties of Hypereutectic Al-xSi Alloys [J]. J. Mater. Sci. Technol., 2017, 33(4): 404-410. |
[4] | Yarraguntla Ashok Kumar Reddy, Akepati Sivasankar Reddy, Pamanji Sreedhara Reddy. Substrate Temperature Dependent Properties of Cu Doped NiO Films Deposited by DC Reactive Magnetron Sputtering [J]. J. Mater. Sci. Technol., 2013, 29(7): 647-651. |
[5] | Xianwu Xiu,Yuping Cao,Zhiyong Pang,Shenghao Han. Effects of Substrate Temperature on the Properties of Mo-doped ZnO Films Prepared by RF Magnetron Sputtering [J]. J Mater Sci Technol, 2009, 25(06): 785-788. |
[6] | Hengcheng Liao,Ke Ding,Juanjuan Bi,Min Zhang,Huipin Wang Lei Zhao. Eutectic Solidification in Al-13.0%Si Alloys with Combined Addition of Strontium and Boron [J]. J Mater Sci Technol, 2009, 25(04): 437-440. |
[7] | Hua Cheng,Aimin Wu,Jinquan Xiao,Nanlin Shi,Lishi Wen. Effects of Substrate Temperature on the Growth of Polycrystalline Si Films Deposited with SiH4+Ar [J]. J Mater Sci Technol, 2009, 25(04): 489-491. |
[8] | Rongfa CHEN, Dunwen ZUO, Feng XU, Duoseng LI, Min WANG. Diamond Film Synthesis with a DC Plasma Jet: Effect of the Contacting Interface between Substrate and Base on the Substrate Temperature [J]. J Mater Sci Technol, 2007, 23(04): 495-498. |
[9] | Lihe QIAN, Seishi NISHIDO, Hiroyuki TODA, Toshiro KOBAYASHI. FEM Modeling of Crack Propagation in a Model Multiphase Alloy [J]. J Mater Sci Technol, 2006, 22(01): 59-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||