J. Mater. Sci. Technol. ›› 2021, Vol. 77: 47-57.DOI: 10.1016/j.jmst.2020.11.030
• Research Article • Previous Articles Next Articles
Guan-Qiang Wanga,c, Ming-Song Chena,b,*(), Hong-Bin Lia,d, Y.C. Lina,b,c,*(
), Wei-Dong Zenga,c, Yan-Yong Maa,c
Received:
2020-05-09
Revised:
2020-08-25
Accepted:
2020-08-31
Published:
2021-06-30
Online:
2020-11-21
Contact:
Ming-Song Chen,Y.C. Lin
About author:
yclin@csu.edu.cn (Y.C. Lin).Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment[J]. J. Mater. Sci. Technol., 2021, 77: 47-57.
Fig. 1. Microstructures of: (a) as-received material; (b) deformed sample (T = 950 ℃, ε = 0.69, $\dot{\varepsilon }\text{=0}\text{.1 }{{\text{s}}^{\text{-1}}}$).
Fig. 3. TEM images inside the sample aged at 900 ℃ for 6 h: (a) the dislocation gathered around δ phase; (b) the inhibition of δ phase on grain. (c) crystal structure of δ phase and HRTEM graph of the phase interface between matrix and δ phase.
Fig. 4. SEM maps and EBSD kernel average misorientation maps (KAM) of deformed sample after AT at 900 ℃ for: (a, e) 3 h; (b, f) 6 h; (c, g) 9 h; (d, h) 12 h. (i) The scale label.
Fig. 6. KAM maps and local misorientation distributions of deformed sample after heat treatments of: (a, d) 900 ℃ ×3 h + 980 ℃ ×60 min; (b, e) 900 ℃ ×6 h + 980 ℃ ×60 min; (c, f) 900 ℃ ×12 h + 980 ℃ ×480 min. (g) The reduction amount of area fraction of δ phase.
Fig. 7. Microstructure of deformed sample after heat treatment of 900 °C × 3 h + 980 °C × 30 min: (a) OM and (b) SEM images ( Uδ represents the area fraction of δ phase).
Fig. 8. KAM maps of deformed samples after heat treatments of: (a) 900 °C × 6 h + 990 °C × 10 min; (b) 900 °C × 6 h + 990 °C × 15 min; (c) 900 °C × 6 h + 990 °C × 20 min. Evolution indexes of grain microstructure: (d) average recrystallized grain size; (e) heterogeneous factor of recrystallized grain; (f) average KAM value; (g) area fraction of δ phase.
Fig. 9. EBSD images of samples after different heat treatments: (a, b) orientation image microscopy (OIM) images; (c, d) KAM maps; (e, f) SEM maps. (g) Grain size distribution of samples.
Fig. 10. Schematic illustration of microstructural evolution during RT in the deformed grain with: (a, b) high deformation energy; (c, d) low deformation energy.
Fig. 11. OIM maps of deformed samples after heat treatments of: (a) 900 ℃×9 h + 990℃×20 min; (b) 900 ℃×9 h + 990 ℃×30 min; (c) 900 ℃×9 h + 990 ℃×40 min. (d) 900 ℃×12 h + 990 ℃×20 min; (e) 900 ℃ ×12 h + 990 ℃×40 min;(f) 900 ℃×12 h + 990 ℃×60 min; (g) 900 ℃×12 h + 1000 ℃×10 min; (h) 900 ℃×12 h + 1000 ℃×15 min; (i) 900 ℃×12 h + 1000 ℃×20 min. Evolution indexes of grain microstructures: (j) average KAM value; (k) average grain size and heterogeneous factor; (m) area fraction ofδ phase.
Heat treatment scheme | AT process | RT process | Average grain size (μm) | Heterogeneous factor |
---|---|---|---|---|
1 | 900 ℃×12 h | 990 ℃×(40-60 min) | <16.35 | 0.48 |
2 | 1000 ℃×(10-15 min) | 11.56-14.51 | 0.44 |
Table 1. Optimal two-stage heat treatment schemes.
Heat treatment scheme | AT process | RT process | Average grain size (μm) | Heterogeneous factor |
---|---|---|---|---|
1 | 900 ℃×12 h | 990 ℃×(40-60 min) | <16.35 | 0.48 |
2 | 1000 ℃×(10-15 min) | 11.56-14.51 | 0.44 |
[1] | J.T. Yeom, S.L. Chong, J.H. Kim, N.K. Park, Mater. Sci. Eng. A 449 (2007) 722-726. |
[2] |
D.X. Wen, Y.C. Lin, J. Chen, X.M. Chen, J.L. Zhang, Y.J. Liang, L.T. Li, J. Alloys. Compd. 618 (2015) 372-379.
DOI URL |
[3] |
S.K. Pradhan, S. Mandal, C.N. Athreya, K.A. Babu, B.D. Boer, V.S. Sarma, Mater. Sci. Eng. A 700 (2017) 49-58.
DOI URL |
[4] |
A. Momeni, S.M. Abbasi, M. Morakabati, H. Badri, Metall. Mater. Trans. A 48 (2017) 1216-1229.
DOI URL |
[5] |
F. Chen, Z. Cui, H. Ou, H. Long, Appl. Phys. A 122 (2016) 890-903.
DOI URL |
[6] |
B. Du, Z. Hu, L. Sheng, C. Cui, J. Yang, Y. Zheng, X. Sun, J. Mater. Sci. Technol. 34 (2018) 1805-1816.
DOI URL |
[7] |
X. Wang, G. Han, C. Cui, S. Guan, J. Li, G. Hou, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 35 (2019) 84-87.
DOI URL |
[8] |
P. Geng, G. Qin, J. Zhou, Z. Zou, J. Manuf. Process. 32 (2018) 469-481.
DOI URL |
[9] |
F. Chen, H. Wang, H. Zhu, H. Zhu, F. Ren, Z. Cui, J. Manuf. Process. 38 (2019) 223-234.
DOI URL |
[10] |
L. Wang, F. Liu, Q. Zuo, C.F. Chen, Mater. Des. 47 (2013) 737-745.
DOI URL |
[11] |
D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, L.T. Li, Mater. Sci. Eng. A 591 (2014) 183-192.
DOI URL |
[12] |
D.X. Wen, Y.C. Lin, J. Chen, J. Deng, X.M. Chen, J.L. Zhang, M. He, Mater. Sci. Eng. A 620 (2015) 319-332.
DOI URL |
[13] |
F. Chen, J. Liu, H. Ou, B. Lu, Z. Cui, H. Long, Mater. Sci. Eng. A 642 (2015) 279-287.
DOI URL |
[14] |
A. Momeni, G.R. Ebrahimi, H.R. Faridi, Mater. Sci. Eng. A. 626 (2015) 1-8.
DOI URL |
[15] |
S.M. Abbasi, A. Momeni, Y.C. Lin, H.R. Jafarian, Mater. Sci. Eng. A. 665 (2016) 154-160.
DOI URL |
[16] |
G.Z. Quan, J. Pan, X. Wang, T. Wang, L. Zhang, Z.H. Zhang, Mater. Sci. Eng. A 679 (2017) 358-371.
DOI URL |
[17] |
Q. Zhu, C. Wang, K. Yang, G. Chen, H. Qin, P. Zhang, J. Mater. Sci. Technol. 40 (2020) 146-157.
DOI URL |
[18] |
S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Alloys. Compd. 709 (2017) 394-409.
DOI URL |
[19] |
G.Z. Quan, Y.L. Li, L. Zhang, X. Wang, Vacuum 139 (2017) 51-63.
DOI URL |
[20] | A.J. Brand, K. Karhausen, R. Kopp, Met. Sci. J. 12 (1996) 963-969. |
[21] | C.A. Dandre, S.M. Roberts, R.W. Evans, R.C. Reed, Met. Sci. J. 16 (2000) 14-25. |
[22] |
Y.X. Liu, Y.C. Lin, H. Li, D. Wen, X. Chen, M. Chen, Mater. Sci. Eng. A 626 (2015) 432-440.
DOI URL |
[23] |
M.S. Chen, W.Q. Yuan, H.B. Li, Z.H. Zou, Mater. Charact. 147 (2019) 173-183.
DOI URL |
[24] |
M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Mater. Sci. Eng. A 678 (2016) 137-152.
DOI URL |
[25] |
L.M. Tan, Z.W. Huang, L. Feng, G.A. He, W. Xin, H. Lan, Y.W. Zhang, J. Liang, Mater. Des. 131 (2017) 60-68.
DOI URL |
[26] |
S.K. Pradhan, S. Mandal, C.N. Athreya, K.A. Babu, B.D. Boer, V.S. Sarma, Mater. Sci. Eng. A 700 (2017) 49-58.
DOI URL |
[27] |
H. Yuan, W.C. Liu, Mater. Sci. Eng. A 408 (2005) 281-289.
DOI URL |
[28] |
D.G. He, Y.C. Lin, L.H. Wang, Mater. Des. 165 (2019), 107584.
DOI URL |
[29] |
X.M. Chen, Y.C. Lin, X.H. Li, M.S. Chen, W.Q. Yuan, Vacuum 149 (2018) 1-11.
DOI URL |
[30] |
M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Mater. Des. 94 (2016) 28-38.
DOI URL |
[31] |
H. Mirzadeh, M.H. Parsa, J. Alloys. Compd. 614 (2014) 56-59.
DOI URL |
[32] |
H. Li, M. Ekh, M.H. Colliander, F. Larsson, Int. J. Plast. 110 (2018) 248-271.
DOI URL |
[33] |
D. Jia, W. Sun, D. Xu, F. Liu, J. Mater. Sci. Technol. 35 (2019) 1851-1859.
DOI URL |
[34] |
G.R. Ebrahimi, A. Momeni, H.R. Ezatpour, M. Jahazi, P. Bocher, Mater. Sci. Eng. A 744 (2019) 376-385.
DOI URL |
[35] |
M. Rafiei, H. Mirzadeh, M. Malekan, J. Alloys. Compd. 795 (2019) 207-212.
DOI URL |
[36] |
M. Rafiei, H. Mirzadeh, M.J. Sohrabi, Mater. Lett. 266 (2020), 127481.
DOI URL |
[37] |
M. Rafiei, H. Mirzadeh, M. Malekan, Vacuum 178 (2020), 109456.
DOI URL |
[38] |
M.J. Sohrabi, H. Mirzadeh, Mater. Lett. 261 (2020), 127008.
DOI URL |
[39] |
W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, S.G. Wang, Scr. Mater. 37 (1997) 53-57.
DOI URL |
[40] |
Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, H. Li, J. Alloys. Compd. 649 (2015) 949-960.
DOI URL |
[41] |
Y. Wang, W. Shao, L. Zhen, B. Zhang, Mater. Sci. Eng. A 528 (2011) 3218-3227.
DOI URL |
[42] |
J.J. Ruan, N. Ueshima, K. Oikawa, J. Alloys. Compd. 737 (2018) 83-91.
DOI URL |
[43] |
Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C. Zhao, X. Ma, Z. Long, Mater. Des. 97 (2016) 13-24.
DOI URL |
[44] |
J. An, L. Wang, Y. Liu, W. Cai, X. Song, Mater. Sci. Eng. A 684 (2017) 312-317.
DOI URL |
[45] |
K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, H.M. Zbib, Int. J. Plast. 22 (2006) 713-723.
DOI URL |
[46] |
X. Zhu, C. Gong, Y. Jia, R. Wang, C. Zhang, Y. Fu, S. Tu, X. Zhang, J. Mater. Sci. Technol. 35 (2019) 1607-1617.
DOI URL |
[47] |
W. Li, J. Ma, H. Kou, J. Shao, X. Zhang, Y. Deng, Y. Tao, D. Fang, Int. J. Plast. 116 (2019) 143-158.
DOI URL |
[48] |
L. Zhou, A. Mehta, B. Mcwilliams, K. Cho, Y.H. Sohn, J. Mater. Sci. Technol. 35 (2019) 1153-1164.
DOI URL |
[49] |
Y.X. Liu, Y.C. Lin, H. Li, D.X. Wen, X.M. Chen, M.S. Chen, Mater. Sci. Eng. A 626 (2015) 432-440.
DOI URL |
[50] |
M.S. Chen, Y.C. Lin, K.K. Li, Y. Zhou, Comp. Mater. Sci. 122 (2016) 150-158.
DOI URL |
[51] | J. Wang, D. Liu, Y. Yang, Acta Metall, Sin. 52 (2016) 707-716. (in Chinese) |
[52] |
X. Wang, Z. Huang, B. Cai, N. Zhou, O. Magdysyuk, Y. Gao, S. Srivatsa, L. Tan, L. Jiang, Acta Mater. 168 (2019) 287-298.
DOI URL |
[53] |
A. Agnoli, M. Bernacki, R. Logé, J. Franchet, J. Laigo, N. Bozzolo, Metall. Mater. Trans. A 46 (2015) 4405-4421.
DOI URL |
[54] |
Y.C. Lin, Y. Liu, M. Chen, M. Huang, X. Ma, Z. Long, Mater. Des. 99 (2016) 107-114.
DOI URL |
[55] |
P. Páramo-Kañetas, U. Özturk, J. Calvo, J.M. Cabrera, M. Guerrero-Mata, J. Mater. Process. Technol. 255 (2018) 204-211.
DOI URL |
[56] |
M.S. Chen, Z.H. Zou, Y.C. Lin, H. Li, W.Q. Yuan, Mater. Charact. 141 (2018) 212-222.
DOI URL |
[57] |
M.S. Chen, Z.H. Zou, Y.C. Lin, H.B. Li, G.Q. Wang, J. Mater. Sci. Technol. 35 (2019) 1403-1411.
DOI URL |
[58] |
A. Thomas, M. EI-Wahabi, J.M. Cabrera, J.M. Prado, J. Mater. Process. Technol. 177 (2006) 469-472.
DOI URL |
[59] |
M.S. Chen, Z.H. Zou, Y.C. Lin, H.B. Li, G.Q. Wang, Y.Y. Ma, Mater. Charact. 151 (2019) 445-456.
DOI URL |
[60] |
D. Wen, Y.C. Lin, Y. Zhou, Vacuum 141 (2017) 316-327.
DOI URL |
[61] |
M.S. Chen, G.Q. Wang, H.B. Li, Y.C. Lin, Z.H. Zou, Y.Y. Ma, Appl. Phys. A 125 (2019) 447.
DOI URL |
[62] |
F.J. Humphreys, Scr. Mater. 43 (2000) 591-596.
DOI URL |
[63] |
Z. Wen, Y. Zhao, H. Hua, W. Nan, F.U. Li, P. Han, Trans. Nonferr. Metal. Soc. 24 (2014) 1500-1505.
DOI URL |
[64] |
S. Joseph, T.C. Lindley, D. Dye, Int. J. Plast. 110 (2018) 38-56.
DOI URL |
[65] |
A.S. Khan, J. Liu, Int. J. Plast. 86 (2016) 56-69.
DOI URL |
[66] |
H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, Y. Huang, H.J. Li, Y.C. Liu, Mater. Charact. 133 (2017) 138-145.
DOI URL |
[67] |
F. Chen, H. Wang, H. Zhu, Z. Cui, Metall. Mater. Trans. A. 8 (2019) 145-158.
DOI URL |
[68] |
S. Birosca, G. Liu, R. Ding, J. Jiang, T. Simm, C. Deen, M. Whittaker, Int. J. Plast. 118 (2019) 252-268.
DOI URL |
[69] |
H.J. Zhang, L. Chong, Y.C. Liu, Q.Y. Guo, H.J. Li, Mater. Sci. Eng. A 677 (2016) 515-521.
DOI URL |
[70] |
M.S. Chen, G.Q. Wang, H.B. Li, Y.C. Lin, Z.H. Zou, Y.Y. Ma, Adv. Eng. Mater. 21 (2019), 1900558.
DOI URL |
[71] |
Y.C. Lin, D.X. Wen, Appl. Mech. Mater 853 (2017) 117-121.
DOI URL |
[72] |
S. Gorard, Brit. J. Educ. Stud. 53 (2005) 417-430.
DOI URL |
[73] |
J. Du, X. Lu, Q. Deng, Rare Metal Mater. Eng. 43 (2014) 1830-1834.
DOI URL |
[74] |
M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Acta Mater. 44 (1996) 4619-4629.
DOI URL |
[1] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[2] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[3] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[4] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[5] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
[6] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[7] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[8] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[9] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[10] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[11] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37(0): 38-45. |
[12] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
[13] | Hongwang Zhang, Yiming Zhao, Yuhui Wang, Chunling Zhang, Yan Peng. On the microstructural evolution pattern toward nano-scale of an AISI 304 stainless steel during high strain rate surface deformation [J]. J. Mater. Sci. Technol., 2020, 44(0): 148-159. |
[14] | Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process [J]. J. Mater. Sci. Technol., 2020, 42(0): 17-27. |
[15] | Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51(0): 16-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||