J. Mater. Sci. Technol. ›› 2021, Vol. 75: 68-77.DOI: 10.1016/j.jmst.2020.10.025
• Research Article • Previous Articles Next Articles
Jiachen Zhanga, Taiwen Huanga, Kaili Caoa, Jia Chena, Huajing Zonga, Dong Wangb, Jian Zhangb, Jun Zhanga, Lin Liua,*()
Received:
2020-06-19
Revised:
2020-08-19
Accepted:
2020-09-04
Published:
2020-10-21
Online:
2020-10-21
Contact:
Lin Liu
About author:
*E-mail address: linliu@nwpu.edu.cn (L. Liu).Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys[J]. J. Mater. Sci. Technol., 2021, 75: 68-77.
Fig. 2. SEM images of microstructure after standard heat treatment with measured shape parameter ratios in (a) 2Ta alloy, (b) 5Ta alloy, (c)8Ta alloy and (d)DSC heating curves of three investigated alloys.
Alloy | f | d /nm | TL /°C | TS /°C | Tγ′/°C |
---|---|---|---|---|---|
2Ta | 52.69 ± 1.64 | 469.24 ± 46 | 1391 | 1343 | 1171 |
5Ta | 57.64 ± 1.17 | 449.13 ± 31 | 1379 | 1339 | 1198 |
8Ta | 63.91 ± 4.45 | 411.51 ± 40 | 1360 | 1313 | 1211 |
Table 1 γ′ volume fraction (f %), γ′ size (d, nm) and phase transformation temperatures of three alloys (°C). Characteristic temperatures were obtained by DSC.
Alloy | f | d /nm | TL /°C | TS /°C | Tγ′/°C |
---|---|---|---|---|---|
2Ta | 52.69 ± 1.64 | 469.24 ± 46 | 1391 | 1343 | 1171 |
5Ta | 57.64 ± 1.17 | 449.13 ± 31 | 1379 | 1339 | 1198 |
8Ta | 63.91 ± 4.45 | 411.51 ± 40 | 1360 | 1313 | 1211 |
Cr | Co | Mo | Re | Al | Ti | Ta | W | Ni | ||
---|---|---|---|---|---|---|---|---|---|---|
2Ta | γ | 21.43 | 13.25 | 0.68 | 1.68 | 3.38 | 0.59 | 0.09 | 1.73 | 57.57 |
γ′ | 2.87 | 3.93 | 0.33 | 0.16 | 15.14 | 4.43 | 0.86 | 2.09 | 70.24 | |
Kiγ'/γ | 0.13 | 0.3 | 0.49 | 0.1 | 4.48 | 7.51 | 9.56 | 1.21 | 1.22 | |
5Ta | γ | 24.47 | 14.15 | 0.86 | 1.8 | 2.94 | 0.63 | 0.21 | 2.03 | 52.91 |
γ′ | 2.42 | 4.12 | 0.38 | 0.11 | 14.58 | 4.68 | 2.27 | 1.92 | 69.5 | |
Kiγ'/γ | 0.1 | 0.29 | 0.44 | 0.06 | 4.96 | 7.43 | 10.81 | 0.95 | 1.31 | |
8Ta | γ | 28.36 | 14.52 | 0.92 | 1.9 | 2.5 | 0.53 | 0.31 | 2.52 | 48.44 |
γ′ | 1.99 | 4.25 | 0.25 | 0.08 | 14.22 | 4.76 | 3.93 | 1.32 | 69.2 | |
Kiγ'/γ | 0.07 | 0.29 | 0.27 | 0.04 | 5.59 | 8.98 | 12.68 | 0.52 | 1.43 |
Table 2 Concentration distribution of elements in γ/γ′ phases of various alloys (atomic fraction, at. %).
Cr | Co | Mo | Re | Al | Ti | Ta | W | Ni | ||
---|---|---|---|---|---|---|---|---|---|---|
2Ta | γ | 21.43 | 13.25 | 0.68 | 1.68 | 3.38 | 0.59 | 0.09 | 1.73 | 57.57 |
γ′ | 2.87 | 3.93 | 0.33 | 0.16 | 15.14 | 4.43 | 0.86 | 2.09 | 70.24 | |
Kiγ'/γ | 0.13 | 0.3 | 0.49 | 0.1 | 4.48 | 7.51 | 9.56 | 1.21 | 1.22 | |
5Ta | γ | 24.47 | 14.15 | 0.86 | 1.8 | 2.94 | 0.63 | 0.21 | 2.03 | 52.91 |
γ′ | 2.42 | 4.12 | 0.38 | 0.11 | 14.58 | 4.68 | 2.27 | 1.92 | 69.5 | |
Kiγ'/γ | 0.1 | 0.29 | 0.44 | 0.06 | 4.96 | 7.43 | 10.81 | 0.95 | 1.31 | |
8Ta | γ | 28.36 | 14.52 | 0.92 | 1.9 | 2.5 | 0.53 | 0.31 | 2.52 | 48.44 |
γ′ | 1.99 | 4.25 | 0.25 | 0.08 | 14.22 | 4.76 | 3.93 | 1.32 | 69.2 | |
Kiγ'/γ | 0.07 | 0.29 | 0.27 | 0.04 | 5.59 | 8.98 | 12.68 | 0.52 | 1.43 |
Fig. 5. γ′ microstructure evolution in three alloys subjects to isothermal aging periods of 100, 200, 500, 1000 and 2000 h at 900 °C. The shape parameters were also labeled.
Fig. 6. The temporal evolution of the structural properties of the γ′ precipitates in three alloys aged at 900 °C. Three quantities were displayed as a function of aging time: (a) volume fraction, (b) equivalent diameter and (c) number density.
Fig. 7. X-ray diffraction peak (asymmetric (400) plane reflection) for three alloys with heat-treated: (a)2Ta, (b)5Ta and (8Ta) alloys, showing two overlapping peaks corresponding to the γ matrix and γ′ precipitate. The XRD data for 5Ta alloy was extracted from our previous work [6].
Fig. 8. X-ray diffraction peak (asymmetric (400) plane reflection) for three alloys after aging for 2000 h: (a)2Ta, (b)5Ta and 8Ta alloys, showing two overlapping peaks corresponding to the γ matrix and γ′ precipitate.
Alloy | Parameter | Heat-treated | 500 h | 2000 h |
---|---|---|---|---|
2Ta | δ | 0.16 | 0.12 | 0.1 |
η | 0.45 | 0.22 | 0.15 | |
5Ta | δ | -0.07 | -0.05 | 0.03 |
η | 0.41 | 0.21 | 0.11 | |
8Ta | δ | -0.23 | -0.21 | -0.19 |
η | 0.6 | 0.43 | 0.41 |
Table 3 Measured lattice misfits δ (%) and shape parameter η of experimental alloys by high resolution XRD. The X-ray diffraction peaks for 500 h were not shown here.
Alloy | Parameter | Heat-treated | 500 h | 2000 h |
---|---|---|---|---|
2Ta | δ | 0.16 | 0.12 | 0.1 |
η | 0.45 | 0.22 | 0.15 | |
5Ta | δ | -0.07 | -0.05 | 0.03 |
η | 0.41 | 0.21 | 0.11 | |
8Ta | δ | -0.23 | -0.21 | -0.19 |
η | 0.6 | 0.43 | 0.41 |
Fig. 9. Relationship between the lattice misfits and shape parameter η of experimental alloys, some experimental alloys as well as some typical commercial Ni-based superalloys: Alloy PX-2 [17], MC520 [31], Alloy D5 [17], SRR-99 [32], AM3 [33], CMSX-2 [34], CMSX-4 [32] and CMSX-10 [35].
Fig. 10. Plot showing the linear fit of average precipitate size (r3, in nm3) vs aging time (t, in s) during isothermal aging at 900 °C. The corresponding LSW rate constant (K, in nm3·s-1) and coefficient of determination (R2) were also labeled.
Fig. 11. (a) A proxigram showing the width of γ/γ′ interface of three alloys measured by the Cr concentration profile; (b) Interfacial energies for the three alloys as a function of temperatures, and marked experimental results.
Fig. 12. (a) γ′ volume fraction, (b) mean radius and (c) number density evolution measured experimentally and simulated by kinetic modeling for three alloys, the insert was the partial magnification of temporal number density evolution during aging at 900 °C for three alloys.
Fig. 13. Simulated γ′ precipitate size distribution at the maximum value of precipitate number density for three alloys. The corresponding critical radius were also marked. (a) 2Ta alloy, (b) 5Ta alloy and (c) 8Ta alloy.
[1] | L. Liu, J. Zhang, C. Ai, Reference Module in Materials Science and Materials Engineering, Elsevier, 2020. |
[2] | R.C. Reed, The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006. |
[3] |
I.M. Lifshitz, Vv. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50.
DOI URL |
[4] | V.C. Wagner, Z. Elektrochem. Berichte Bunsengesellschaft Für Phys. Chemie 65 (1961) 581-591. |
[5] | R. Srinivasan, R. Banerjee, J.Y. Hwang, G.B. Viswanathan, J. Tiley, D.M. Dimiduk, H.L. Fraser, Phys. Rev. Lett. 102 (2009) 100-103. |
[6] |
J. Zhang, L. Liu, T. Huang, J. Chen, K. Cao, X. Liu, J. Zhang, H. Fu, J. Mater. Sci. Technol. 62 (2021) 1-10.
DOI URL |
[7] | M.M.P. Janssen, Metall. Trans. 4 (1973) 1623-1633. |
[8] |
T. Ikeda, A. Almazouzi, H. Numakura, M. Koiwa, W. Sprengel, H. Nakajima, Acta Mater. 46 (1998) 5369-5376.
DOI URL |
[9] |
A.J. Ardell, Scr. Mater. 66 (2012) 423-426.
DOI URL |
[10] |
G.M. Janowski, R.W. Heckel, B.J. Pletka, Metall. Trans. A 17 (1986) 1891-1905.
DOI URL |
[11] |
S. Gao, J. Hou, F. Yang, Y. Guo, L. Zhou, J. Alloys. Compd. 729 (2017) 903-913.
DOI URL |
[12] |
L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, Z. Li, Mater. Des. 61 (2014) 61-69.
DOI URL |
[13] |
J.X. Chang, D. Wang, G. Zhang, L.H. Lou, J. Zhang, Corros. Sci. 117 (2017) 35-42.
DOI URL |
[14] |
S. Gao, J. Hou, Y. Guo, L. Zhou, Mater. Sci. Eng. A 704 (2017) 302-310.
DOI URL |
[15] |
M. Xie, R. Helmink, S. Tin, J. Alloys. Compd. 562 (2013) 11-18.
DOI URL |
[16] |
J.P. MacSleyne, J.P. Simmons, M. de Graef, Acta Mater. 56 (2008) 427-437.
DOI URL |
[17] |
J.S. Van Sluytman, T.M. Pollock, Acta Mater. 60 (2012) 1771-1783.
DOI URL |
[18] |
P.A.J. Bagot, O. B.W.Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, R.C. Reed, Acta Mater. 125 (2017) 156-165.
DOI URL |
[19] |
Y. Amouyal, Z. Mao, D.N. Seidman, Acta Mater. 58 (2010) 5898-5911.
DOI URL |
[20] |
Z. Mao, C.K. Sudbrack, K.E. Yoon, G. Martin, D.N. Seidman, Nat. Mater. 6 (2007) 210-216.
DOI URL |
[21] |
C.Y. Chen, W.M. Stobbs, Metall. Mater. Trans. A 35 (2004) 733-740.
DOI URL |
[22] |
M. Yang, H. Wei, J. Zhang, Y. Zhao, T. Jin, L. Liu, X.F. Sun, Comput. Mater. Sci. 129 (2017) 211-219.
DOI URL |
[23] | K. Aoki, K. Ishikawa, T. Masumoto, Mater. Sci. Eng.A 192-193 (1995) 316-323. |
[24] |
A.J. Ardell, M. Pozuelo, Intermetallics 88 (2017) 81-90.
DOI URL |
[25] |
H.A. Kuhn, H. Biermann, T. Ungár, H. Mughrabi, Acta Metall. Mater. 39 (1991) 2783-2794.
DOI URL |
[26] |
C. Zhu, T. Yu, C. Wang, D. Wang, Comput. Mater. Sci. 175 (2020), 109586.
DOI URL |
[27] |
R. Eriş, M.V. Akdeniz, A.O. Mekhrabov, Intermetallics 109 (2019) 37-47.
DOI URL |
[28] |
C. Liu, Y. Li, L. Zhu, S. Shi, S. Chen, S. Jin, Mater. Chem. Phys. 217 (2018) 23-30.
DOI URL |
[29] |
Y. Wu, Y. Liu, C. Li, X. Xia, J. Wu, H. Li, J. Alloys. Compd. 771 (2019) 526-533.
DOI URL |
[30] |
L. Xu, C.G. Tian, C.Y. Cui, Y.F. Gu, X.F. Sun, Mater. Sci. Technol. 30 (2014) 962-967.
DOI URL |
[31] | P. Caron, Superalloys 2000, in: Proc. Int. Symp., 9th, TMS, 2000, pp. 737-746. |
[32] |
R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 46 (1998) 4395-4404.
DOI URL |
[33] | L.P. Kubin, B. Lisiecki, P. Caron, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 71 (1995) 991-1009. |
[34] |
P. Caron, T. Khan, Mater. Sci. Eng. 61 (1983) 173-184.
DOI URL |
[35] |
C. Schulze, M. Feller-Kniepmeier, Mater. Sci. Eng. A 281 (2000) 204-212.
DOI URL |
[36] |
H.A. Calderon, P.W. Voorhees, J.L. Murray, G. Kostorz, Acta Metall. Mater. 42 (1994) 991-1000.
DOI URL |
[37] |
M.S.A. Karunaratne, P. Carter, R.C. Reed, Mater. Sci. Eng. A 281 (2000) 229-233.
DOI URL |
[38] |
A.J. Ardell, J. Mater. Sci. 46 (2011) 4832-4849.
DOI URL |
[39] |
P.P. Camus, D.J. Larson, Appl. Surf. Sci. 76-77 (1994) 416-423.
DOI URL |
[40] |
J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28 (1958) 258-267.
DOI URL |
[41] |
F. Forghani, J. Moon, J.C. Han, R. Rahimi, R. Abbaschian, C.G. Park, H.S. Kim, M. Nili-Ahmadabadi, Mater. Charact. 153 (2019) 284-293.
DOI |
[42] |
Z. Mao, C. Booth-Morrison, C.K. Sudbrack, R.D. Noebe, D.N. Seidman, Acta Mater. 166 (2019) 702-714.
DOI URL |
[43] |
J.D. Robson, Acta Mater. 52 (2004) 4669- 4676. 77
DOI URL |
[1] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[2] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[3] | Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 47(0): 20-28. |
[4] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
[5] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[6] | Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51(0): 16-31. |
[7] | Jing Xue, Shenbao Jin, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Understanding formation of Mg-depletion zones in Al-Mg alloys under high pressure torsion [J]. J. Mater. Sci. Technol., 2019, 35(5): 858-864. |
[8] | Wandong Xing, Zijie Wei, Rong Yu, Fanyan Meng. Prediction of stable high-pressure structures of tantalum nitride TaN2 [J]. J. Mater. Sci. Technol., 2019, 35(10): 2297-2304. |
[9] | Menglei Sun, Yu Jiang, Jiangfeng Ni, Liang Li. Application of materials based on group VB elements in sodium-ion batteries: A review [J]. J. Mater. Sci. Technol., 2018, 34(11): 1969-1976. |
[10] |
Yahui Liu, Shifeng Liu, Chao Deng, Haiyang Fan, Xiaoli Yuan, Qing Liu.
Inhomogeneous deformation of {111} |
[11] | Yi Gaosong, Zeng Weizhi, D. Poplawsky Jonathan, A. Cullen David, Wang Zhifen, L. Free Michael. Characterizing and modeling the precipitation of Mg-rich phases in Al 5xxx alloys aged at low temperatures [J]. J. Mater. Sci. Technol., 2017, 33(9): 991-1003. |
[12] | X.G. Liu, L. Wang, L.H. Lou, J. Zhang. Effect of Mo Addition on Microstructural Characteristics in a Re-containing Single Crystal Superalloy [J]. J. Mater. Sci. Technol., 2015, 31(2): 143-147. |
[13] | Yuxi Wu, Wanglin Zhang, Jia Guo, Jieshan Hou, Xiuyan Li, Renzhong Huang, Xiufang Ma, Qianfeng Zhang. The First-principles Study on the Occupation Behavior and the Ductility Mechanism of Zr in Ni–Ni3Al System with Lattice Misfit [J]. J. Mater. Sci. Technol., 2014, 30(5): 517-522. |
[14] | H.B. Motejadded, M. Soltanieh, S. Rastegari. Coarsening Kinetics of γ′ Precipitates in Dendritic Regions of a Ni3Al Base Alloy [J]. J Mater Sci Technol, 2012, 28(3): 221-228. |
[15] | X.P. Tan, J.L. Liu, X.P. Song, T. Jin, X.F. Sun, Z.Q. Hu. Measurements of γ/γ´ Lattice Misfit and γ´ Volume Fraction for a Ru-containing Nickel-based Single Crystal Superalloy [J]. J Mater Sci Technol, 2011, 27(10): 899-905. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||