Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 42 Issue (0): 17-27    DOI: 10.1016/j.jmst.2019.09.036
Orginal Article Current Issue | Archive | Adv Search |
Microstructural evolution and deformation behavior of copper alloy during rheoforging process
Miao Caoa*(), Qi Zhanga, Ke Huanga, Xinjian Wangb, Botao Changc, Lei Caia
a School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
b Zhejiang Dunan Artificial Environment Co., Ltd., Hangzhou, 310053, China
c School of Science, Xi’an Jiaotong University, Xi’an, 710049, China
Download:  HTML  PDF(5906KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A complete rheo-forming process was carried out to investigate the rheoforging process of C3771 lead brass valve, starting from the semi-solid billet preparation to rheoforging experiments and material performance tests. The near-spherical micro-grains with mean equivalent diameter of 56.3 μm, shape factor of 0.78 were obtained when the raw C3771 lead brass were rotary swaged to a radial strain of 0.22 and then heated to 895 °C for 5 min. The Forge 3D software was used to analyze the temperature, strain and strain rate distribution of copper valve for obtain the reasonable process parameters during the subsequent rheoforging process. The experiment results showed that near-spherical micro-grains were stretched and refined to about 35.7-43.4 μm in different positions due to the dynamic recrystallization during the rheoforging process. The cap thread and nut thread failure torque of the so-produced valve are also discovered to be higher than the traditionally forged copper valve with dendrite micro-grains, with an enhancement of the cap and thread failure torque of 42.2 % and 28 %, respectively.

Key words:  Semi-solid      Microstructural evolution      Dynamic recrystallization      Mechanical properties     
Received:  26 April 2019     
Corresponding Authors:  Cao Miao     E-mail:  miaocao0518@mail.xjtu.edu.cn

Cite this article: 

Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process. J. Mater. Sci. Technol., 2020, 42(0): 17-27.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.09.036     OR     https://www.jmst.org/EN/Y2020/V42/I0/17

Fig. 1.  Two-dimensional drawing of valve.
Fig. 2.  RS machine produced by Xi’an Innovation Precision Instrument Research Institute.
Fig. 3.  Rheoforging process flow of copper valve.
Fig. 4.  35 tons hydraulic extruder.
Fig. 5.  Cap thread and nut thread.
Fig. 6.  Liquid fraction of rotary swaged C3771 alloy: (a) DSC vs. temperature curve; (b) liquid fraction vs. temperature curve.
Fig. 7.  True stress-strain curves of RSSIMA-processed C3771 at 900 °C.
Fig. 8.  Geometry of the rheoforging die.
Fig. 9.  Metal flow in rheoforging process.
Fig. 10.  Simulation results in the last simulation step at rheoforging temperature at 900 °C with the rheoforging speed of 30 mm/s and the die temperature of 300 °C: (a) temperature distribution of copper valve; (b) equivalent strain distribution of copper valve; (c) strain rate distribution of copper valve.
Fig. 11.  Temperature distribution of copper valve in the last simulation step at rheoforging temperature at 900 °C, the speed of 20 mm/s and the die temperature of 300 °C.
Fig. 12.  Temperature change with rheoforging timee of the tracking pionts: (a) 30 mm/s; (b) 20 mm/s.
Fig. 13.  Forging force variation with the calculation step during the rheoforging process.
Fig. 14.  Temperature field distributions at different rheoforging temperatures of semi-solid billet: (a) 895 °C; (b) 890 °C.
Fig. 15.  Microstructures of C3771 copper alloy: (a) as-cast; (b) rotary swaged.
Fig. 16.  Rotary swaged C3771 microstructures at different IHT conditions: (a) 890 °C holding for 5 min; (b) 895 °C holding for 5 min; (c) 900 °C holding for 5 min; (d) 900 °C holding for 10 min.
Fig. 17.  (a) Semi-finished rheoforged valve and (b) finished rheoforged valve.
Fig. 18.  (a) Sampling position in rheoforging valve, (b) microstructure of IHT copper alloy with a radial strain value of 0.3 at 895 °C holding for 6 min and microstructures in rheoforging valve for (c) sampling position a, (d) sampling position b and (e) sampling position c.
Number 1 2 3 4 5
Cap thread damage torque (N m) 50 52 62 65 59
Nut thread breaking torque (N m) 55 56 53 55 55
Table 1  Cap thread and nut thread failure torque of semi-solid copper valve.
Number 1 2 3 4 5
Cap thread damage torque (N m) 37.5 35 44 40 46
Nut thread breaking torque (N m) 47 45 43 42 37
Table 2  Cap thread and nut thread failure torque of traditionally forged copper valve.
Fig. 19.  Vickers hardness of semi-solid forged valve and conventional forged valve.
[1] E.D. Manson-Whitton, I.C. Stone, J.R. Jones, P.S. Grant, B. Cantor, Acta Mater.50(2002) 2517-2535.
[2] S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, J. Alloys Compd. 466(2008) 67-72.
[3] D. Liu, H.V. Atkinson, P. Kaprannos, W. Jirattiticharoean, H. Jones, Mater. Sci. Eng. A 361 (2003) 213-224.
[4] Y. Wang, S. Zhao, C. Zhang, Mater. Trans. 58(2017) 176-181.
[5] Y. Wang, S. Zhao, X. Zhao, C. Zhang, J. Mech. Sci. Technol. 31 (2017) 3917-3923.
[6] D.I. Uhlenhaut, J. Kradolfer, W. Püttgen, J.F. Löffler, P.J. Uggowitzer, ActaMater. 54(2006) 2727-2734.
[7] J. Jiang, Y. Wang, H.V. Atkinson, Mater. Charact. 90(2014) 52-61.
[8] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51(2006) 881-981.
[9] A. Yamashita, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 300 (2001) 142-147.
[10] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53(2008) 893-979.
[11] R. Gupta, S. Srivastava, N.K. Kumar, S.K. Panthi, Mater. Sci. Eng. A 654 (2016) 282-291.
[12] M. Cao, Q. Zhang, Y. Zhang, J. Alloys Compd. 721(2017) 220-228.
[13] S.J. Lim, H.J. Choi, C.H. Lee, J. Mater. Process. Technol. 209(2009) 283-288.
[14] W.M. Gan, Y.D. Huang, R. Wang, G.F. Wang, A. Srinivasan, H.G. Brokmeier, N. Schell, K.U. Kainer, N. Hort, Mater. Des. 63(2014) 83-88.
[15] M.A. Abdulstaar, E.A. El-Danaf, N.S. Waluyo, L. Wagner, Mater. Sci. Eng. A 565 (2013) 351-358.
[16] G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloys Compd. 647(2015) 548-557.
[17] Q. Zhang, M. Cao, J. Cai, J. Mater. Process. Technol. 215(2015) 42-49.
[18] E. Becker, L. Langlois, V. Favier, R. Bigot, Solid State Phenom. 217-218(2014) 130-137.
[19] K. Huang, R.E. Logé, Mater. Des. 111(2016) 548-574.
[20] V. Favier, H.V. Atkinson, Acta Mater. 59(2011) 1271-1280.
[21] O. Ludwig, M. Dimichiel, L. Salvo, M. Suéry, P. Falus, Metall. Mater. Trans. A 36 (2005) 1515-1523.
[22] F.J. Humphreys, M. Hatherly, Oxford, 2004, pp. 442-444.
[1] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[2] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[3] Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior[J]. 材料科学与技术, 2020, 39(0): 14-21.
[4] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[5] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[6] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[7] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[8] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[9] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[10] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[11] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[12] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[13] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[14] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[15] Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling[J]. 材料科学与技术, 2020, 43(0): 220-229.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.