J. Mater. Sci. Technol. ›› 2021, Vol. 82: 80-95.DOI: 10.1016/j.jmst.2020.12.023
• Research Article • Previous Articles Next Articles
Yunwu Maa,c, Sizhe Niua,b, Huihong Liuc, Yongbing Lia,b,*(), Ninshu Mac
Received:
2020-09-23
Revised:
2020-11-13
Accepted:
2020-12-01
Published:
2021-01-24
Online:
2021-01-24
Contact:
Yongbing Li
About author:
∗ Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong Uni-versity, Shanghai, 200240, PR China. E-mail address: yongbinglee@sjtu.edu.cn (Y. Li).Yunwu Ma, Sizhe Niu, Huihong Liu, Yongbing Li, Ninshu Ma. Microstructural evolution in friction self-piercing riveted aluminum alloy AA7075-T6 joints[J]. J. Mater. Sci. Technol., 2021, 82: 80-95.
Aluminum type | Base material | Ultimate tensile strength of base material (UTSBM) | Joint efficiency ($\frac{UT{{S}_{\text{FSWjoint}}}}{UT{{S}_{\text{BM}}}}\times %$) | Reference |
---|---|---|---|---|
Heat-treatable | AA2024-T6 | 477 MPa | 76 % | [ |
AA2219-T87 | 491 MPa | 69 % | [ | |
AA6005A-T6 | 294 MPa | 79 % | [ | |
AA6061-T6 | 279 MPa | 65 % | [ | |
AA7075-T6 | 564 MPa | 80 % | [ | |
AA7085-T7452 | 500MPa | 82 % | [ | |
Non-heat treatable | AA5083-O | 302 MPa | 100 % | [ |
AA5456-H112 | 324 MPa | 97 % | [ |
Table 1 Joint efficiencies of typical FSW joints of aluminum alloys.
Aluminum type | Base material | Ultimate tensile strength of base material (UTSBM) | Joint efficiency ($\frac{UT{{S}_{\text{FSWjoint}}}}{UT{{S}_{\text{BM}}}}\times %$) | Reference |
---|---|---|---|---|
Heat-treatable | AA2024-T6 | 477 MPa | 76 % | [ |
AA2219-T87 | 491 MPa | 69 % | [ | |
AA6005A-T6 | 294 MPa | 79 % | [ | |
AA6061-T6 | 279 MPa | 65 % | [ | |
AA7075-T6 | 564 MPa | 80 % | [ | |
AA7085-T7452 | 500MPa | 82 % | [ | |
Non-heat treatable | AA5083-O | 302 MPa | 100 % | [ |
AA5456-H112 | 324 MPa | 97 % | [ |
Material | Elastic modulus (GPa) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
35CrMo | 211 | 835 | 985 | ≥12 |
AA7075-T6 | 72 | 479 | 586 | 13.6 |
Table 2 Mechanical properties of 35CrMo steel and AA7075-T6 aluminum alloy.
Material | Elastic modulus (GPa) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
35CrMo | 211 | 835 | 985 | ≥12 |
AA7075-T6 | 72 | 479 | 586 | 13.6 |
35CrMo | Mn | Si | Cr | Mo | C | S | P | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|
0.75 | 0.3 | 1.05 | 0.2 | 0.34 | ≤0.03 | ≤0.03 | Bal. | |||
AA7075-T6 | Mg | Zn | Cu | Mn | Si | Ti | Cr | S | Fe | Al |
2.42 | 5.72 | 1.43 | 0.03 | 0.12 | 0.03 | 0.19 | 0.12 | 0.23 | Bal. |
Table 3 Chemical composition of 35CrMo steel and aluminum alloy AA7075-T6 (wt.%).
35CrMo | Mn | Si | Cr | Mo | C | S | P | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|
0.75 | 0.3 | 1.05 | 0.2 | 0.34 | ≤0.03 | ≤0.03 | Bal. | |||
AA7075-T6 | Mg | Zn | Cu | Mn | Si | Ti | Cr | S | Fe | Al |
2.42 | 5.72 | 1.43 | 0.03 | 0.12 | 0.03 | 0.19 | 0.12 | 0.23 | Bal. |
Fig. 3. Macro profiles of the F-SPR joint made with 3600 rpm rotational speed and 2.0 mm/s feed rate. (a) The etched cross-section in ND-RD plane, (b) b-b section in TD-RD plane, (c) c-c section in TD-RD plane, (d)-(g) zoom-in views at the rivet-sheet interfaces.
Fig. 4. Macro profiles of the F-SPR joint made with 3600 rpm rotational speed and 8.0 mm/s feed rate. (a) The etched cross-section in ND-RD plane, (b) b-b section in TD-RD plane, (c) c-c section in TD-RD plane, (d)-(g) zoom-in views at the rivet-sheet interfaces.
Fig. 5. Microstructures of the as-received AA7075-T6 in three different orthogonal directions. ND: normal direction; TD: transverse direction; RD: rolling direction.
Fig. 6. EBSD results of the as-received AA7075-T6 in the ND-RD plane. (a) Inverse pole figure, (b) grain boundary map, (c) fractions of misorientation angles.
Fig. 7. Optical microscope images of aluminum outside of the rivet in the 3600 rpm-2.0 mm/s F-SPR joint. (a) The middle of the upper sheet, (b) the middle of the lower sheet, (c) the lower sheet at the joint bottom.
Fig. 8. EBSD results of region 1 outside the rivet in Fig. 7(b). (a) Inverse pole figure, (b) grain boundary map, (c)-(e) fractions of misorientation angles in sub-zones I, II, and III, respectively. Arrows in (a) highlight the fine grain clusters.
Fig. 9. EBSD results of the region marked with a yellow box in Fig. 8(b). (a) Inverse pole figure, (b) grain boundary map, (c) fractions of misorientation angles.
Fig. 10. EBSD results of region 2 at the bottom of the joint in Fig. 7(c). (a) Inverse pole figure, (b) grain boundary map, (c) fractions of misorientation angles.
Fig. 11. Optical microscope images at the sheet-sheet interface outside the rivet in the 3600 rpm-2.0 mm/s F-SPR joint. (a) Left interface, (b) right interface.
Fig. 12. EBSD results of region 3 at the sheet-sheet interface in Fig. 11(b). (a) Inverse pole figure, (b) grain boundary map, (c) fractions of misorientation angles.
Fig. 13. Optical microscope images of aluminum in the rivet cavity in the 3600 rpm-2.0 mm/s F-SPR joint. (a) Upper portion showing coarse grains, (b) the boundary between coarse and fine grains, (c) lower position showing fine grains.
Fig. 14. EBSD results of region 4 in the rivet cavity in Fig. 13(a). (a) Inverse pole figure, (b) grain boundary map, (c) fractions of misorientation angles.
Fig. 15. EBSD results of region 5 in the rivet cavity in Fig. 13(c). (a) Inverse pole figure, (b) grain boundary map, (c) fractions of misorientation angles.
Fig. 16. Vickers hardness distribution maps of F-SPR joints under different process parameters. (a) 3600 rpm-2.0 mm/s, (b) 1800 rpm-2.0 mm/s, (c) 3600 rpm-8.0 mm/s.
Fig. 17. TEM bright field images of the aluminum microstructure in the 3600 rpm-2.0 mm/s joint. (a) AA7075-T6 base material, (b)-(d) zones I, II and III outside the rivet showing coarsened precipitates, (e) the upper portion inside rivet showing coarsened precipitates and partial dissolution, and (f) the lower portion inside rivet showing complete dissolution of precipitates.
Fig. 18. The measured reactive force and torque during the F-SPR process as functions of process time and the calculated heat input for different process parameter combinations. (a) Reactive force, (b) reactive torque, (c) heat input.
Fig. 20. Etched macro profiles of aluminum alloys surrounding the rivet at different feed depths of the 3600 rpm-2.0 mm/s F-SPR process. (a) 1.0 mm, (b) 2.0 mm, (c) 2.5 mm, (d) 3.0 mm, (e) 4.0 mm and (f) 5.3 mm.
Fig. 23. Formation mechanism of the fine grain zone in the rivet cavity. The upper joint cross-sections correspond to Fig. 20(a)-(d) and (f), and the lower schematics illustrate the contact conditions between the trapped aluminum and the lower sheet.
[1] |
K. Mori, Y. Abe, T. Kato, J. Mater. Process. Technol. 212 (9)(2012) 1900-1905.
DOI URL |
[2] |
X. Zhang, X. He, F. Gu, A. Ball, J. Mater. Process. Technol. 268 (2019) 192-200.
DOI URL |
[3] |
H. Jiang, S. Gao, G. Li, J. Cui, Mater. Des. 183 (2019), 108141.
DOI URL |
[4] | M. Jäckel, T. Grimm, D. Landgrebe, AIP Conf. Proc. 1769 (2016), 100010. |
[5] |
H. Duan, G. Han, M. Wang, X. Zhang, Z. Liu, Z. Liu, Mater. Des. 54 (2014) 14-424.
DOI URL |
[6] |
X. Zhao, D. Meng, J. Zhang, Q. Han, Int. J. Adv. Manuf. Technol. 109 (9-12)(2020) 2409-2419.
DOI URL |
[7] | J.W. Wang, Z.X. Liu, Y. Shang, A.L. Liu, M.X. Wang, R.N. Sun, P.-C. Wang,ASME J. Manuf. Sci. Eng. 133 (3)(2011), 031009. |
[8] |
Y. Durandet, R. Deam, A. Beer, W. Song, S. Blacket, Mater. Des. 31 (SUPPL. 1)(2010) S13-S16.
DOI URL |
[9] |
Y. Li, Z. Wei, Z. Wang, Y. Li, ASME J. Manuf. Sci. Eng. 135 (6)(2013), 061007.
DOI URL |
[10] |
X. Liu, Y.C. Lim, Y. Li, W. Tang, Y. Ma, Z. Feng, J. Ni, J. Mater. Process. Technol. 237 (2016) 19-30.
DOI URL |
[11] | Y.C. Lim, C.D. Warren, J. Chen, Z. Feng, Joining of Lightweight Dissimilar Materials by Friction Self-Piercing Riveting, 2019, pp. 189-195. |
[12] |
Y. Ma, B. Yang, M. Lou, Y. Li, N. Ma, J. Mater. Process. Technol. 278 (2020), 116543.
DOI URL |
[13] | Y. Ma, H. Shan, S. Niu, Y. Li, Z. Lin, N. Ma, Engineering(2020). |
[14] |
Y. Ma, S. Niu, H. Shan, Y. Li, N. Ma, Automot. Innov. 3 (3)(2020) 242-249.
DOI URL |
[15] |
Z. Shen, Y. Chen, J. Hou, X. Yang, A. Gerlich, Sci. Technol. Weld. Join. 20 (1)(2015) 48-57.
DOI URL |
[16] | M. Reimann, J. Goebel, J.F. dos Santos, Mater.Des. 132 (2017) 283-294. |
[17] |
W. Tao, Z. Yong, L. Xuemei, K. Matsuda, Mater. Sci. Eng. A 671 (2016) 7-16.
DOI URL |
[18] |
B. Wang, B.-b. Lei, J.-x. Zhu, Q. Feng, L. Wang, D. Wu, Mater. Des. 87 (2015) 593-599.
DOI URL |
[19] |
X. Zeng, P. Xue, L. Wu, D. Ni, B. Xiao, K. Wang, Z. Ma, J. Mater. Sci. Technol. 35 (6)(2019) 972-981.
DOI |
[20] |
Y. Hu, H. Liu, S. Li, S. Du, D.P. Sekulic, Mater. Sci. Eng. A 731 (2018) 107-118.
DOI URL |
[21] |
J. Min, J. Li, Y. Li, B.E. Carlson, J. Lin, ASME J. Manuf. Sci. Eng. 138 (5)(2015), 054501.
DOI URL |
[22] |
M.D. Tier, T.S. Rosendo, J.F. dos Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro, T.R. Strohaecker, J. Mater. Process. Technol. 213 (6)(2013) 997-1005.
DOI URL |
[23] | A. Baqerzadeh Chehreh, M. Gratzel, J.P. Bergmann, F. Walther, Materials (Basel) 13 (14)(2020). |
[24] |
K. Nakata, Y.G. Kim, M. Ushio, T. Hashimoto, S. Jyogan, ISIJ Int. 40 (Suppl)(2000) S15-S19.
DOI URL |
[25] | A.P. Reynolds, W.D. Lockwood, T.U. Seidel, Mater. Sci.Forum 331-337 (2000) 1719-1724. |
[26] |
X. Liu, H. Liu, T. Wang, X. Wang, S. Yang, J. Mater. Sci. Technol. 34 (1)(2018) 102-111.
DOI URL |
[27] |
A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, M.Z. Omar, Mater. Sci. Eng. A 754 (2019) 728-734.
DOI URL |
[28] |
G. İpekoğlu, S. Erim, G. Çam, Int. J. Adv. Manuf. Technol. 70 (1)(2014) 201-213.
DOI URL |
[29] |
W. Xu, Y. Luo, W. Zhang, M. Fu, J. Mater. Sci. Technol. 34 (1)(2018) 173-184.
DOI URL |
[30] | M. Mardalizadeh, M. Khandaei, M.A. Safarkhanian, J. Adhes. Sci. Technol.(2020) 1-20. |
[31] |
Y.W. Ma, Y.B. Li, Z.Q. Lin, ASME J. Manuf. Sci. Eng. 141 (4)(2019), 041005-041005-11.
DOI URL |
[32] | Y. Li, Y. Ma, M. Lou, Z. Lin, Google Patents, 2019. |
[33] |
F. Liu, T. Nelson, Mater. Des. 115 (2017) 467-478.
DOI URL |
[34] |
H. Miura, T. Sakai, H. Hamaji, J.J. Jonas, Scr. Mater. 50 (1)(2004) 65-69.
DOI URL |
[35] |
J. Zhang, X.S. Feng, J.S. Gao, H. Huang, Z.Q. Ma, L.J. Guo, J. Mater. Sci. Technol. 34 (1)(2018) 219-227.
DOI |
[36] |
H. Liu, H. Fujii, Mater. Sci. Eng. A 711 (2018) 140-148.
DOI URL |
[37] |
R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (1)(2005) 1-78.
DOI URL |
[38] |
H. Ji, Y. Deng, H. Xu, S. Lin, W. Wang, H. Dong, Mater. Des. 192 (2020), 108729.
DOI URL |
[39] |
Z. Zhang, C. He, Y. Li, L. Yu, S. Zhao, X. Zhao, J. Mater. Sci. Technol. 43 (2020) 1-13.
DOI URL |
[40] |
A. Gerlich, M. Yamamoto, T.H. North, Metall. Mater. Trans. A 38 (6)(2007) 1291-1302.
DOI URL |
[41] |
D. Richard, P.N. Adler, Metall. Trans. A 8 (7)(1977) 1177-1183.
DOI URL |
[42] |
J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Acta Mater. 51 (3)(2003) 713-729.
DOI URL |
[43] | A.H. Feng, D.L. Chen, Z.Y. Ma, Metall. Mater. Trans. A 41a (4)(2010) 957-971. |
[44] |
J. Zhang, P. Upadhyay, Y. Hovanski, D.P. Field, Metall. Mater. Trans. A 49 (1)(2017) 210-222.
DOI URL |
[45] |
M. Ahmed, S. Ataya, M.E.-S. Seleman, H. Ammar, E. Ahmed, J. Mater. Process. Technol. 242 (2017) 77-91.
DOI URL |
[46] |
A. Gerlich, G. Avramovic-Cingara, T.H. North, Metall. Mater. Trans. A 37 (9)(2006) 2773-2786.
DOI URL |
[47] |
T.R. McNelley, S. Swaminathan, J.Q. Su, Scr. Mater. 58 (5)(2008) 349-354.
DOI URL |
[48] |
Y. Hu, H. Liu, H. Fujii, K. Ushioda, J. Manuf. Processes 56 (2020) 362-371.
DOI URL |
[49] |
R. Prasad Mahto, S.K. Pal, J. Manuf. Processes 55 (2020) 103-118.
DOI URL |
[50] |
C. Yang, C. Wu, L. Shi, Sci. Technol. Weld. Join. 25 (4)(2019) 345-358.
DOI URL |
[51] |
H. Schmidt, J. Hattel, J. Wert, Modell. Simul. Mater. Sci. Eng. 12 (1)(2004) 143-157.
DOI URL |
[52] |
H. Su, C.S. Wu, A. Pittner, M. Rethmeier, Energy 77 (2014) 720-731.
DOI URL |
[53] |
G. Chen, G. Wang, Q. Shi, Y. Zhao, Y. Hao, S. Zhang, J. Manuf. Processes 41 (2019) 1-9.
DOI URL |
[54] |
G.Q. Chen, H. Li, G.Q. Wang, Z.Q. Guo, S. Zhang, Q.L. Dai, X.B. Wang, G. Zhang, Q.Y. Shi, Int. J. Mach. Tools Manuf. 124 (2018) 12-21.
DOI URL |
[55] |
J. Min, Y. Li, J. Li, B.E. Carlson, J. Lin, J. Mater. Process. Technol. 222 (2015) 268-279.
DOI URL |
[1] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[2] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[3] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[4] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[5] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[6] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[7] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[8] | Yunsong Niu, Lingling Xing, Feng Yang, Huawei Li, Minghui Chen, Shenglong Zhu, Fuhui Wang. Phase structure of sputtered Ta coating and its ablation behavior by laser pulse heating (LPH) [J]. J. Mater. Sci. Technol., 2021, 65(0): 7-17. |
[9] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
[10] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[11] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[12] | Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior [J]. J. Mater. Sci. Technol., 2020, 39(0): 14-21. |
[13] | Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening [J]. J. Mater. Sci. Technol., 2020, 46(0): 44-49. |
[14] | Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling [J]. J. Mater. Sci. Technol., 2020, 43(0): 220-229. |
[15] | Xiawei Yang, Wenya Li, Siqi Yu, Yaxin Xu, Kaiwei Hu, Yaobang Zhao. Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 59(0): 117-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||