J. Mater. Sci. Technol. ›› 2021, Vol. 82: 69-79.DOI: 10.1016/j.jmst.2020.11.071
• Research Article • Previous Articles Next Articles
Zhenguo Gaoa, Zehao Zhaoa, Di Lana, Kaichang Koua, Jiaoqiang Zhanga,*(), Hongjing Wub,*(
)
Received:
2020-11-05
Revised:
2020-11-25
Accepted:
2020-11-29
Published:
2021-01-23
Online:
2021-01-23
Contact:
Jiaoqiang Zhang,Hongjing Wu
About author:
wuhongjing@nwpu.edu.cn (H. Wu).Zhenguo Gao, Zehao Zhao, Di Lan, Kaichang Kou, Jiaoqiang Zhang, Hongjing Wu. Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents[J]. J. Mater. Sci. Technol., 2021, 82: 69-79.
Samples | Sodium citrate /mmol | Phases | Space group | Crystal system |
---|---|---|---|---|
PB1-La | 2 | Co2Fe(CN)6 | F - 43 m | Cubic |
PB2-La | 4 | Co2Fe(CN)6 | F - 43 m | Cubic |
PB3-La | 6 | Co2Fe(CN)6 | F - 43 m | Cubic |
Co3[Fe(CN)6]2·H2O | F - 43 m | Cubic | ||
PB4-La | 8 | Co2Fe(CN)6 | F - 43 m | Cubic |
Co3[Fe(CN)6]2·H2O | F - 43 m | Cubic | ||
PB1-La-C | / | CoFe | Pm - 3 m | Cubic |
PB2-La-C | / | CoFe | Pm - 3 m | Cubic |
La2O3 | P - 3 m1 | Hexagonal | ||
PB3-La-C | / | CoFe | Pm - 3 m | Cubic |
LaFeO3 | Pnma | Tetragonal | ||
PB4-La-C | / | CoFe | Pm - 3 m | Cubic |
La2O3 | P - 3 m1 | Hexagonal | ||
LaFeO3 | Pnma | Tetragonal |
Table 1 Prime information summary of PBAs fabricated with different amounts of chelating agents and their corresponding prologized products.
Samples | Sodium citrate /mmol | Phases | Space group | Crystal system |
---|---|---|---|---|
PB1-La | 2 | Co2Fe(CN)6 | F - 43 m | Cubic |
PB2-La | 4 | Co2Fe(CN)6 | F - 43 m | Cubic |
PB3-La | 6 | Co2Fe(CN)6 | F - 43 m | Cubic |
Co3[Fe(CN)6]2·H2O | F - 43 m | Cubic | ||
PB4-La | 8 | Co2Fe(CN)6 | F - 43 m | Cubic |
Co3[Fe(CN)6]2·H2O | F - 43 m | Cubic | ||
PB1-La-C | / | CoFe | Pm - 3 m | Cubic |
PB2-La-C | / | CoFe | Pm - 3 m | Cubic |
La2O3 | P - 3 m1 | Hexagonal | ||
PB3-La-C | / | CoFe | Pm - 3 m | Cubic |
LaFeO3 | Pnma | Tetragonal | ||
PB4-La-C | / | CoFe | Pm - 3 m | Cubic |
La2O3 | P - 3 m1 | Hexagonal | ||
LaFeO3 | Pnma | Tetragonal |
Fig. 1. (a) Schematic process of phase transition of PBA crystals; XRD patterns of (b) PBAs with no La decoration and their corresponding (c) annealed products; (d) XRD patterns of La decorative PBAs and (e) their corresponding pyrolyzed products.
Samples | Phases | Atoms | a/Å | b/Å | c/Å | V/Å3 | x | y | z | Occ. | Rwp/% | Rp/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.857 | 2.857 | 2.857 | 23.317 | 0.000 | 0.000 | 0.000 | 0.835 | 18.5 | 15.6 |
Fe(1b) | 0.500 | 0.500 | 0.500 | 0.420 | ||||||||
PB2-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.861 | 2.861 | 2.861 | 23.421 | 0.000 | 0.000 | 0.250 | 0.725 | 13.1 | 11.0 |
Fe(1b) | 0.000 | 0.000 | 0.000 | 0.383 | ||||||||
La2O3 [P - 3 m1] | La(4f) | 3.958 | 3.958 | 6.160 | 82.583 | 0.333 | 0.667 | 0.245 | 0.713 | |||
O1(2a) | 0.000 | 0.000 | 0.000 | 0.860 | ||||||||
O2(4f) | 0.333 | 0.667 | 0.679 | 1.000 | ||||||||
PB3-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.853 | 2.853 | 2.853 | 23.226 | 0.000 | 0.000 | 0.000 | 0.805 | 19.8 | 17.7 |
Fe(1b) | 0.500 | 0.500 | 0.500 | 0.487 | ||||||||
LaFeO3 [Pnma] | O1(8d) | 5.574 | 5.596 | 7.883 | 245.858 | 0.719 | 0.302 | 0.029 | 1.000 | |||
Fe1(4b) | 0.000 | 0.500 | 0.000 | 0.402 | ||||||||
O2(4c) | 0.080 | 0.485 | 0.250 | 0.288 | ||||||||
La1(4c) | 0.993 | 0.030 | 0.250 | 0.405 | ||||||||
PB4-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.853 | 2.853 | 2.853 | 23.232 | 0.000 | 0.000 | 0.000 | 0.478 | 18.9 | 12.9 |
Fe(1b) | 0.500 | 0.500 | 0.500 | 0.289 | ||||||||
La2O3 [P - 3 m1] | La(4f) | 3.960 | 3.960 | 6.176 | 83.870 | 0.333 | 0.667 | 0.234 | 0.544 | |||
O1(2a) | 0.000 | 0.000 | 0.000 | 1.000 | ||||||||
O2(4f) | 0.333 | 0.667 | 0.639 | 0.739 | ||||||||
LaFeO3 [Pnma] | O1(8d) | 5.566 | 5.654 | 7.880 | 247.795 | 0.754 | 0.333 | 0.028 | 0.912 | |||
Fe1(4b) | 0.000 | 0.000 | 0.000 | 0.510 | ||||||||
O2(4c) | 0.163 | 0.494 | 0.250 | 0.325 | ||||||||
La1(4c) | 0.972 | 0.045 | 0.250 | 0.474 |
Table 2 Rietveld refined structural parameters for La decorative CoFe alloy polycrystals.
Samples | Phases | Atoms | a/Å | b/Å | c/Å | V/Å3 | x | y | z | Occ. | Rwp/% | Rp/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.857 | 2.857 | 2.857 | 23.317 | 0.000 | 0.000 | 0.000 | 0.835 | 18.5 | 15.6 |
Fe(1b) | 0.500 | 0.500 | 0.500 | 0.420 | ||||||||
PB2-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.861 | 2.861 | 2.861 | 23.421 | 0.000 | 0.000 | 0.250 | 0.725 | 13.1 | 11.0 |
Fe(1b) | 0.000 | 0.000 | 0.000 | 0.383 | ||||||||
La2O3 [P - 3 m1] | La(4f) | 3.958 | 3.958 | 6.160 | 82.583 | 0.333 | 0.667 | 0.245 | 0.713 | |||
O1(2a) | 0.000 | 0.000 | 0.000 | 0.860 | ||||||||
O2(4f) | 0.333 | 0.667 | 0.679 | 1.000 | ||||||||
PB3-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.853 | 2.853 | 2.853 | 23.226 | 0.000 | 0.000 | 0.000 | 0.805 | 19.8 | 17.7 |
Fe(1b) | 0.500 | 0.500 | 0.500 | 0.487 | ||||||||
LaFeO3 [Pnma] | O1(8d) | 5.574 | 5.596 | 7.883 | 245.858 | 0.719 | 0.302 | 0.029 | 1.000 | |||
Fe1(4b) | 0.000 | 0.500 | 0.000 | 0.402 | ||||||||
O2(4c) | 0.080 | 0.485 | 0.250 | 0.288 | ||||||||
La1(4c) | 0.993 | 0.030 | 0.250 | 0.405 | ||||||||
PB4-La-C | CoFe [Pm - 3 m] | Co(1a) | 2.853 | 2.853 | 2.853 | 23.232 | 0.000 | 0.000 | 0.000 | 0.478 | 18.9 | 12.9 |
Fe(1b) | 0.500 | 0.500 | 0.500 | 0.289 | ||||||||
La2O3 [P - 3 m1] | La(4f) | 3.960 | 3.960 | 6.176 | 83.870 | 0.333 | 0.667 | 0.234 | 0.544 | |||
O1(2a) | 0.000 | 0.000 | 0.000 | 1.000 | ||||||||
O2(4f) | 0.333 | 0.667 | 0.639 | 0.739 | ||||||||
LaFeO3 [Pnma] | O1(8d) | 5.566 | 5.654 | 7.880 | 247.795 | 0.754 | 0.333 | 0.028 | 0.912 | |||
Fe1(4b) | 0.000 | 0.000 | 0.000 | 0.510 | ||||||||
O2(4c) | 0.163 | 0.494 | 0.250 | 0.325 | ||||||||
La1(4c) | 0.972 | 0.045 | 0.250 | 0.474 |
Fig. 3. Schematic illustration of the kinetic regulation of self-assembly; SEM images of (a) PB1-La, (b) PB2-La, (c) PB3-La and (d) PB4-La; (e) elements mapping images of PB3-La; SEM images of (f) PB1-La-C, (g) PB2-La-C, (h) PB3-La-C and (i) PB4-La-C; (j) elements mapping images of PB3-La-C and (k) PB4-La-C.
Fig. 4. (a) Raman spectrums; (b) XPS spectrums in whole regions; (c) high-resolution Fe2p spectrums of all samples; (d) high-resolution Co2p spectrums of PB4-La-C; (e) schematic illustration of oxygen vacancy in perovskite type LaFeO3 crystal.
Fig. 5. Frequency dependance of (a1) real (ε') and (b1) imaginary (ε”) part of complex permittivity, (c1) real (μ') and (d1) imaginary part (μ”) of complex permeability; Debye relaxation curves (Cole-Cole semicircles) of (a2) PB1-La-C, (b2) PB2-La-C, (c2) PB3-La-C and (d2) PB4-La-C; magnetic hysteresis loops of (a3) PB1-La-C, (b3) PB2-La-C, (c3) PB3-La-C and (d3) PB4-La-C.
Fig. 6. (a1) Dielectric loss tangent (tanδε) and magnetic loss tangent (tanδμ), (c1) α and (d1) normalized matching thickness (tm) curves; Three-dimensional images of calculated RL values of (a2) PB1-La-C, (b2) PB2-La-C, (c2) PB3-La-C and (d2) PB4-La-C; Two-dimensional images of calculated RL values of (a3) PB1-La-C, (b3) PB2-La-C, (c3) PB3-La-C and (d3) PB4-La-C.
Fig. 7. RL and |Zin/Z0| curves of (a1) PB1-La-C, (b1) PB2-La-C, (c1) PB3-La-C and (d1) PB4-La-C; RL and fE histograms of (a2) PB1-La-C, (b2) PB2-La-C, (c2) PB3-La-C and (d2) PB4-La-C; (c) C0 curves; (d) equivalent EM attenuation model of perovskite polycrystals.
No. | MAMs | RLmin/dB | fE/dB | tm/mm | Refs. |
---|---|---|---|---|---|
1 | Fe nanowires | -29.74 | 3.84 | 3.0 | [ |
2 | Fe@Fe3O4 | -40.00 | 4.00 | 1.5 | [ |
3 | FeSiAl | -39.7 | 3.20 | 4.0 | [ |
4 | FeCoNiCrCuAl0.3@air@NiO | -41.10 | 2.67 | 3.6 | [ |
5 | FexOy/Fe-graphite | -42.1 | 4.40 | 5.5 | [ |
6 | Ni@TiO2 | -38.00 | 1.80 | 1.8 | [ |
7 | Nd0.3Ce1.7Co17 | -30.53 | 2.24 | 1.8 | [ |
8 | FeNi@C | -30.00 | 4.70 | 2.0 | [ |
9 | Co@C microsphere | -30.00 | 3.00 | 2.0 | [ |
10 | Co/CoNiO2 | -30.50 | 1.40 | 4.5 | [ |
11 | NiCo-alloy@tubular-g-C3N4 | -35.63 | 4.80 | 2.0 | [ |
12 | CoNi@NG-NCP | -24.03 | 4.32 | 2.5 | [ |
13 | CoFe2@SiO2 | -19.93 | 4.29 | 2.0 | [ |
14 | LaFeO3/RGO | -36.23 | 3.92 | 2.0 | [ |
15 | CoFe@LaFeO3 | -44.13 | 4.88 | 3.0 | This work |
16 | CoFe@LaFeO3@La2O3 | -33.95 | 2.72 | 2.0 | This work |
Table 3 Comparison?of EMW absorbability of representative transition metal (Fe, Co, Ni) deriving crystals.
No. | MAMs | RLmin/dB | fE/dB | tm/mm | Refs. |
---|---|---|---|---|---|
1 | Fe nanowires | -29.74 | 3.84 | 3.0 | [ |
2 | Fe@Fe3O4 | -40.00 | 4.00 | 1.5 | [ |
3 | FeSiAl | -39.7 | 3.20 | 4.0 | [ |
4 | FeCoNiCrCuAl0.3@air@NiO | -41.10 | 2.67 | 3.6 | [ |
5 | FexOy/Fe-graphite | -42.1 | 4.40 | 5.5 | [ |
6 | Ni@TiO2 | -38.00 | 1.80 | 1.8 | [ |
7 | Nd0.3Ce1.7Co17 | -30.53 | 2.24 | 1.8 | [ |
8 | FeNi@C | -30.00 | 4.70 | 2.0 | [ |
9 | Co@C microsphere | -30.00 | 3.00 | 2.0 | [ |
10 | Co/CoNiO2 | -30.50 | 1.40 | 4.5 | [ |
11 | NiCo-alloy@tubular-g-C3N4 | -35.63 | 4.80 | 2.0 | [ |
12 | CoNi@NG-NCP | -24.03 | 4.32 | 2.5 | [ |
13 | CoFe2@SiO2 | -19.93 | 4.29 | 2.0 | [ |
14 | LaFeO3/RGO | -36.23 | 3.92 | 2.0 | [ |
15 | CoFe@LaFeO3 | -44.13 | 4.88 | 3.0 | This work |
16 | CoFe@LaFeO3@La2O3 | -33.95 | 2.72 | 2.0 | This work |
[1] | Q. Li, Y. Zhao, X. Li, L. Wang, X. Li, J. Zhang, R. Che, Small(2020), http://dx.doi.org/10.1002/smll.202003905 . |
[2] |
Z. Zhao, K. Kou, L. Zhang, H. Wu, J. Colloid Interface Sci. 579 (2020) 733-740.
DOI URL |
[3] |
X. Liu, N. Chai, Z. Yu, H. Xu, X. Li, J. Liu, X. Yin, R. Riedel, J. Mater. Sci. Technol. 35 (2019) 2859-2867.
DOI URL |
[4] |
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao, P. Xu, X. Han, Y. Du, Nano-Micro Lett. 12 (2020) 153.
DOI URL |
[5] |
B. Wen, M. Cao, Z. Hou, W. Song, L. Zhang, M. Lu, H. Jin, X. Fang, W. Wang, J. Yuan, Carbon 65 (2013) 124-139.
DOI URL |
[6] |
M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao, H. Yang, X. Fang, J. Yuan, Adv. Funct. Mater. 29 (2019), 1807398.
DOI URL |
[7] |
D. Lan, Z. Gao, Z. Zhao, G. Wu, K. Kou, H. Wu, Chem. Eng. J. 408 (2020) 127313.
DOI URL |
[8] |
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang, L. Cui, P. Xu, Y. Du, Carbon 145 (2019) 701-711.
DOI URL |
[9] |
, W.G.D. Dharmaratne K. Tennakone, J. Phys. C-Solid State Phys. 16 (1983) 5633-5639.
DOI URL |
[10] |
O. Sato, T. Kawakami, M. Kimura, S. Hishiya, S. Kubo, Y. Einaga, J. Am. Chem. Soc. 126 (2004) 13176-13177.
DOI URL |
[11] | J.C. Wojdel, I.D.R. Moreira, S.T. Bromley, F. Illas, J.Chem. Phys. 128 (2008), 044713. |
[12] |
D.M. Pajerowski, T. Watanabe, T. Yamamoto, Y. Einaga, Phys. Rev. B 83 (2011), 153202.
DOI URL |
[13] |
P. Miao, J. Chen, Y. Tang, K. Chen, J. Kong, Sci. China-Mater 63 (2020) 2050-2061.
DOI URL |
[14] |
J. Tian, H. Zhang, Fuller. Nanotub. Carbon Nanostruct. 25 (2017) 17-22.
DOI URL |
[15] |
A. Shanmugavani, D. Kalpana, R.K. Selvan, Mater. Res. Bull. 71 (2015) 133-141.
DOI URL |
[16] |
D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian, X. Han, J. Colloid Interface Sci. 514 (2018) 10-20.
DOI URL |
[17] |
P. Lott, M. Eck, D.E. Doronkin, A. Zimina, S. Tischer, R. Popescu, S. Belin, V. Briois, M. Casapu, J.D. Grunwaldt, O. Deutschmann, Appl. Catal. B-Environ. 278 (2020), 119244.
DOI URL |
[18] |
Q. Yao, C. Tian, Z. Lu, J. Wang, H. Zhou, G. Rao, Ceram. Int. 46 (2020) 20472-20476.
DOI URL |
[19] |
F. Xue, Y.H. Tian, G. Jian, W. Li, L. Tang, P. Guo, Ceram. Int. 46 (2020) 930-936.
DOI URL |
[20] |
Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi, G. Wu, Chem. Eng. J. 402 (2020), 125951.
DOI URL |
[21] |
Y. Zhu, Y. Liu, Y. Gao, Q. Cheng, L. Zhao, Z. Yang, Mater. Res. Bull. 87 (2017) 135-139.
DOI URL |
[22] |
W. Zhu, W. Chen, H. Yu, Y. Zeng, F. Ming, H. Liang, Z. Wang, Appl. Catal. B-Environ. 278 (2020), 119326.
DOI URL |
[23] |
T.J. Siang, A.A. Jalil, M.Y.S. Hamid, A.A. Abdulrasheed, T.A.T. Abdullah, D.V.N. Vo, Fuel 278 (2020), 118360.
DOI URL |
[24] |
D. Triyono, I. Purnamasari, R.A. Rafsanjani, Crystals 10 (2020) 399.
DOI URL |
[25] |
Z. Zhao, K.C. Kou, H.J. Wu, J. Colloid Interface Sci. 574 (2020) 1-10.
DOI URL |
[26] |
S. Zhang, Z. Gao, Q. Jia, N. Liu, J. Zhang, K. Kou, Appl. Surf. Sci. 515 (2020), 146042.
DOI URL |
[27] |
Y. Lv, M. Han, W. Gong, D. Wang, C. Chen, G. Wang, H. Zhang, H. Zhao, Angew. Chemie 59 (2020) 23521-23526.
DOI URL |
[28] |
Z. Gao, J. Zhang, S. Zhang, D. Lan, Z. Zhao, K. Kou, Polymer 202 (2020) 122679.
DOI URL |
[29] | W. Choi, H. Choe, Y. Nam, Compos. Pt. A-Appl.Sci. Manuf. 138 (2020), 106070. |
[30] |
X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang, L. Guo, G. Wang, Adv. Funct. Mater. 28 (2018), 1800761.
DOI URL |
[31] |
Z. Zhang, J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, G. Ji, Chem. Eng. J. 395 (2020), 125190.
DOI URL |
[32] |
Z. Gao, J. Zhang, D. Lei, Z. Guo, S. Zhang, Y. Song, J. Wang, K. Kou, Compos. Commun. 22 (2020) 100472.
DOI URL |
[33] |
D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, J. Mater. Chem. C 7 (2019) 5037-5046.
DOI URL |
[34] |
B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small 16 (2020), 2003502.
DOI URL |
[35] |
T. Chakraborty, S. Sharma, A. Ghosh, A.S. Mahapatra, S. Chakrabarti, S. Sutradhar, J. Phys. Chem. C 124 (2020) 19396-19405.
DOI URL |
[36] |
B. Lu, H. Huang, X. Dong, X. Zhang, J. Lei, J. Sun, C. Dong, J. Appl. Phys. 104 (2008), 114313.
DOI URL |
[37] |
D. Lan, Z. Zhao, Z. Gao, K. Kou, G. Wu, H. Wu, J. Magn. Magn. Mater. 512 (2020), 167065.
DOI URL |
[38] |
P. He, M. Cao, Y. Cai, J. Shu, W. Cao, J. Yuan, Carbon 157 (2020) 80-89.
DOI URL |
[39] |
Y. Cheng, J. Seow, H. Zhao, Z. Xu, G. Ji, Nano-Micro Lett. 12 (2020) 125.
DOI URL |
[40] |
P. Hu, S. Dong, X. Li, J. Chen, P. Hu, ACS Sustain. Chem. Eng. 8 (2020) 10230-10241.
DOI URL |
[41] |
P. Yang, H. Ruan, Y. Sun, R. Li, Y. Lu, C. Xiang, Nanotechnology 31 (2020), 395708.
DOI URL |
[42] |
H. Lv, H. Zhang, G. Ji, Z. Xu, ACS Appl. Mater. Interf. 8 (2016) 6529-6538.
DOI URL |
[43] | Y. Feng, C. Tang, T. Qiu, Mater. Sci. Eng. B-Adv.Funct. Solid-State Mater. 178 (2013) 1005-1011. |
[44] |
H. Wu, D. Lan, B. Li, L. Zhang, Y. Fu, Y. Zhang, H. Xing, Compos. Pt. B-Eng. 179 (2019), 107524.
DOI URL |
[45] | R. Meng, T. Zhang, H. Yu, J. Zhang, G. Wen, X. Huang, L. Huang, L. Xia, B. Zhong, Nanotechnology 30(2019), 185704. |
[46] |
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Phys. Chem. Chem. Phys. 17 (2015) 8802-8810.
DOI URL |
[47] | Y. He, S. Pan, L. Cheng, J. Luo, J. Yu, Rare Metal Mat. Eng. 48 (2019) 3108-3112. |
[48] |
X. Li, X. Zeng, X. Li, H. Yan, X. Wang, X. Pan, Mater. Chem. Phys. 220 (2018) 1-10.
DOI URL |
[49] |
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Carbon 111 (2017) 722-732.
DOI URL |
[50] |
S.U. Rehman, J.M. Wang, Q.H. Luo, M.Z. Sun, L. Jiang, Q. Han, J.C. Liu, H. Bi, Chem. Eng. J. 373 (2019) 122-130.
DOI |
[51] |
S. Hu, Y. Zhou, M. He, Q. Liao, H. Yang, H. Li, R. Xu, Q. Ding, Mater. Lett. 231 (2018) 171-174.
DOI URL |
[52] |
X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu, X. Zhang, Y. Chen, ACS Appl. Mater. Interf. 10 (2018) 24920-24929.
DOI URL |
[53] |
M. Li, Z. Yang, Y. Zhang, D. Hu, X. Lyu, J. Alloy. Compd. 802 (2019) 41-49.
DOI URL |
[54] | Z. Jia, Z. Gao, K. Kou, A. Feng, C. Zhang, B. Xu, G. Wu, Composites Compos. Commun. 20 (2020), 100344. |
[1] | Heng Chen, Biao Zhao, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides [J]. J. Mater. Sci. Technol., 2020, 47(0): 216-222. |
[2] | Xiaohua Sha, Wen Yue, Haichao Zhang, Wenbo Qin, Dingshun She, Chengbiao Wang. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. J. Mater. Sci. Technol., 2020, 43(0): 64-73. |
[3] | Minghang Li, Xiaomeng Fan, Hailong Xu, Fang Ye, Jimei Xue, Xiaoqiang Li, Laifei Cheng. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance [J]. J. Mater. Sci. Technol., 2020, 59(0): 164-172. |
[4] | Chen Chen, Sifan Zeng, Xiaochun Han, Yongqiang Tan, Wanlin Feng, Huahai Shen, Shuming Peng, Haibin Zhang. 3D carbon network supported porous SiOC ceramics with enhanced microwave absorption properties [J]. J. Mater. Sci. Technol., 2020, 54(0): 223-229. |
[5] | Hongliang Zhang, Liqiang Zhu, Liqiang Guo, Yanghui Liu, Qing Wan. n-type Polycrystalline Si Thick Films Deposited on SiNx-coated Metallurgical Grade Si Substrates [J]. J. Mater. Sci. Technol., 2015, 31(1): 65-69. |
[6] | Yanli Lu, Liuchao Zhang, Yingying Zhou, Zheng Chen, Jianguo Zhang. Phase-field Study for Texture Evolution in Polycrystalline Materials under Applied Stress [J]. J. Mater. Sci. Technol., 2013, 29(10): 999-1004. |
[7] | Junfeng WANG, Rui XIONG, Ning SHU, Jing SHI, Zhengzhong JIN. Preparation of Polycrystalline Singe-phase K0:3MoO3 by Hot Isostatic Pressing Sintering [J]. J Mater Sci Technol, 2007, 23(05): 633-636. |
[8] | Xiaofu ZHANG, Anxian LU, Yu WANG. New Vitrified Bond Diamond Grinding Wheel for Grinding the Cylinder of Polycrystalline Diamond Compacts [J]. J Mater Sci Technol, 2007, 23(05): 672-676. |
[9] | Raphaë, l Pesci, Karim Inal, Renaud Masson. Stress Distribution and Cleavage Analysis in a 16MnNiMo5 Bainitic Steel X-ray Diffraction and Multiscale Polycrystalline Modelling [J]. J Mater Sci Technol, 2004, 20(Supl.): 32-34. |
[10] | LI Guangqiang WANG Changzhen XU Xiuguang Northeast University of Technology,Shenyang,110006,China.. Ion Exchange Reaction between Polycrystalline Na β″-Alumina and LaCl_3 [J]. J Mater Sci Technol, 1990, 6(4): 293-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||