J. Mater. Sci. Technol. ›› 2021, Vol. 82: 57-68.DOI: 10.1016/j.jmst.2020.12.016
• Research Article • Previous Articles Next Articles
C.J. Barra,b,*(), K. Xiaa,b,*(
)
Received:
2020-09-09
Revised:
2020-11-05
Accepted:
2020-12-05
Published:
2021-01-19
Online:
2021-01-19
Contact:
C.J. Barr,K. Xia
About author:
k.xia@unimelb.edu.au (K. Xia).C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures[J]. J. Mater. Sci. Technol., 2021, 82: 57-68.
Fig. 1. Stages of grain refinement in single-phase low SFE materials: (a) primary twinning, (b) secondary twinning and development of LAGBs in primary twins, (c) shear banding which fragments twins, and (d) evolution of LAGBs into fine grains.
Alloy | Cu | Al | Fe | Ni | Mn | Si |
---|---|---|---|---|---|---|
AB | Bal. | 6.40 | 0.19 | - | - | < 0.01 |
NAB | Bal. | 8.80 | 4.40 | 5.20 | 1.10 | 0.07 |
Table 1 Analysed compositions (wt.%) of AB and NAB.
Alloy | Cu | Al | Fe | Ni | Mn | Si |
---|---|---|---|---|---|---|
AB | Bal. | 6.40 | 0.19 | - | - | < 0.01 |
NAB | Bal. | 8.80 | 4.40 | 5.20 | 1.10 | 0.07 |
Fig. 2. EBSD maps for AB after ECAP at 350 °C for 4 passes via route C, showing (a) highlighted refined grains (blue) and twins (red), and (b) grain misorientation. HAGBs, LAGBs and twin boundaries are indicated as black, grey and red lines, respectively, with incoherent twin boundaries indicated as green lines in (a). Arrowed and numbered features are described in the text.
Fig. 3. EBSD map for AB after ECAP at 400 °C for 4 passes via route C, showing (a) highlighted twins and refined grains and (b) grain misorientation. Lines and shading have the same meaning as in Fig. 2, with arrowed and numbered features described in the text.
Fig. 4. SEM microstructures of NAB in (a) the as-received state containing lamellar κIII (arrow 1), fine κIV particles (arrow 2), and coarse κII particles (arrow 3), and after ECAP via route BA at 400 °C for (b) 1 pass which induces fragmentation (arrow 1), buckling (arrow 2) and spheroidization of the lamellae (3), with further refinement after (c) 2 passes, and (d) 4 passes.
Fig. 5. EBSD maps for the as-received NAB showing (a) highlighted twins and refined grains, and (b) grain misorientation. κ phases excluded due to scale, and lines and shading have the same meanings as in Fig. 2.
Fig. 6. EBSD maps for NAB after 1 pass at 400 °C showing highlighted refined grains and twins. Different microstructural regions are highlighted including (a) an overview of the different particle types, and closer views of the boundary structures around (b) the fine κIV, (c) fragmented lamellae, and (d) buckled lamellae. Lines and shading have the same meanings as in Fig. 2, with the κ phases shaded dark grey. Arrowed, numbered, and circled features are described in the text.
Fig. 7. EBSD misorientation maps for NAB after 1 pass at 400 °C showing the same microstructural regions described in Fig. 6. κ-phases are highlighted light blue, with HAGBs between κ-phases indicated by black lines and LAGBs dark blue. Line colours in the α-phase have the same meaning as in Fig. 2.
Fig. 8. EBSD maps for NAB after ECAP at 400 °C via BA showing highlighted refined grains and twins (left) and misorientation data (right) after (a-b) 2 passes and (c-d) 4 passes. Lines and shading have the same meanings as in Fig. 6, Fig. 7, with arrowed and numbered features described in the text.
Fig. 9. EBSD maps for NAB after 4 passes of ECAP via BA showing highlighted refined grains and twins (left) and misorientation data (right) at pressing temperatures of (a-b) 450 °C and (c-d) 500 °C. Lines and shading have the same meanings as in Fig. 6, Fig. 7, with arrowed and numbered features described in the text.
Fig. 10. Stages of grain refinement in single-phase low SFE alloys at elevated temperatures: (a) reduced density of twins with LAGB segments, (b) detwinning and deformation to existing twin structures leading to incoherent twin boundaries, (c) secondary twinning, shear banding and dynamic recrystallisation at deformed twins, and (d) propagation of recrystallised grains at shear bands and deformed twins. Arrowed and numbered features are described in the text.
Fig. 11. Mechanisms and structures around particles of different sizes: (a) secondary slip by prismatic looping around fine particles leading to (b) cellular structures; (c) deformation zones around coarse particles leading to (d) rings of recrystallised grains.
Fig. 12. Various stages of cross-slip and twin formation in the presence of fine particles, showing (a) prismatic looping into alternative slip directions, (b) formation of a twin nucleus on the primary slip plane following saturation of prismatic looping, and (c) expansion of a twin boundary beyond the bounding particle.
Fig. 13. Dependence of substructure formation on the crystal and lamellar orientations, showing (a) twins (grey shaded) and twin nuclei (solid lines) when the ECAP shear plane (bottom left to top right), slip plane (arrowed) and lamellar planes (black shaded) are aligned, or sub-cell formation when either the lamellae (b) or slip direction (c) are misaligned with the shear plane.
Fig. 14. Formation of HAGBs between fragmented lamellae, showing (a) initial deformation altering the crystal orientation on both sides of the lamellae through lattice rotation or twin formation, and (b) creation of new boundaries (thick black line) after the fracture of the lamellae.
[1] |
S. Qu, Acta Mater. 57 (5)(2009) 1586.
DOI URL |
[2] |
S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 28 (9)(1997) 1781-1795.
DOI URL |
[3] |
H. Paul, A. Morawiec, J. Driver, E. Bouzy, Int. J. Plast. 25 (8)(2009) 1588-1608.
DOI URL |
[4] |
J. Gil Sevillano, E. Bouzy, Mater. Sci. Eng. 86 (1987) 35-51.
DOI URL |
[5] | N. Hansen, D. Hughes, Physica Status Solidi(a) 149 (1)(1995) 155-172. |
[6] |
B. Bay, N. Hansen, D. Hughes, D. Kuhlmann-Wilsdorf, Acta metallurgica et materialia 40 (2)(1992) 205-219.
DOI URL |
[7] |
T. Malis, D. Lloyd, K. Tangri, Physica Status Solidi 11 (1)(1972) 275-286.
DOI URL |
[8] |
T. Malis, K. Tangri, Acta Metallurgica 27 (1)(1979) 25-32.
DOI URL |
[9] |
A. Azushima, R. Kopp, A. Korhonen, D. Yang, F. Micari, G. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, CIRP Annals-Manufacturing Technol. 57 (2)(2008) 716-735.
DOI URL |
[10] |
R.Z. Valiev, Prog. Mater. Sci. 51 (7)(2006) 881.
DOI URL |
[11] |
A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (6)(2008) 893-979.
DOI URL |
[12] | R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, JOM 58 (4)(2006) 33-39. |
[13] |
B. Bay, N. Hansen, D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113 (1989) 385-397.
DOI URL |
[14] | R.Z. Valiev, V.Y. Valiev, O.A. Gertsman, Kaibyshev, A Appl. Res. 97 (1)(1986) 11-56. |
[15] |
X. An, Q. Lin, S. Wu, Z. Zhang, R. Figueiredo, N. Gao, T. Langdon, Philos. Mag. 91 (25)(2011) 3307-3326.
DOI URL |
[16] |
X. An, S. Wu, Z. Wang, Z. Zhang, Prog. Mater. Sci. 101 (2019) 1-45.
DOI |
[17] |
K.X. Wei, J. Horky, W. Wei, M. Zehetbauer, D. Setman, E. Schafler, J. Hu, J. Alloys. Compd. 771 (2019) 317-321.
DOI URL |
[18] |
S. Dasharath, S. Mula, Mater. Sci. Eng. A 690 (2017) 393-404.
DOI URL |
[19] |
P. Apps, M. Berta, P. Prangnell, Acta Mater. 53 (2)(2005) 499-511.
DOI URL |
[20] |
P. Apps, J.R. Bowen, P. Prangnell, Acta Mater. 51 (10)(2003) 2811-2822.
DOI URL |
[21] | F.J. Humphreys, M. Hatherly, G.S. Rohrer, Recrystallization and Related Annealing Phenomena, 2004. |
[22] |
F. Humphreys, A. Stewart, Surf. Sci. 31 (1972) 389-421.
DOI URL |
[23] |
M. Ashby, Philos. Mag. 14 (132)(1966) 1157-1178.
DOI URL |
[24] |
Y. Zhang, Acta Mater. 59 (15)(2011) 6048-6058.
DOI URL |
[25] |
X.H. An, Scr. Mater. 66 (5)(2012) 227.
DOI URL |
[26] |
C.J. Barr, D.T. McDonald, K. Xia, J. Mater. Sci. 48 (2013) 1-9.
DOI URL |
[27] |
C. Barr, D. McDonald, K. Xia, Metall. Mater. Trans. A 46 (9)(2015) 4202-4214.
DOI URL |
[28] |
D.T. McDonald, C.J. Barr, K. Xia, Metall. Mater. Trans. A 44 (12)(2013) 5556-5566.
DOI URL |
[29] |
S. Goto, R. Kirchheim, T. Al-Kassab, C. Borchers, Trans. Nonferrous Met. Soc. China 17 (6)(2007) 1129-1138.
DOI URL |
[30] | A. Rosenfield, G. Hahn, J. Embury, Metall. Trans. 3 (11)(1972) 2797-2804. |
[31] | J.G. Sevillano, Mater. Sci. Eng. 21 (1975) 221-225. |
[32] |
M. Dupeux, F. Durand, Metall. Trans. A 6 (11)(1975) 2143-2151.
DOI URL |
[33] |
J.D. Embury, R.M. Fisher, Acta Metall. 14 (2)(1966) 147-159.
DOI URL |
[34] |
X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu, Acta Mater. 59 (9)(2011) 3422-3430.
DOI URL |
[35] |
A. Jahanafrooz, F. Hasan, G. Lorimer, N. Ridley, Metall. Mater. Trans. A 14 (10)(1983) 1951-1956.
DOI URL |
[36] | F. Hasan, A Phys. Metall. Mater. Sci. 13 (8)(1982) 1337. |
[37] |
E.A. Culpan, J. Mater. Sci. 13 (8)(1978) 1647.
DOI URL |
[38] |
H. Paul, J. Driver, Z. Jasie´nski, Acta Mater. 50 (4)(2002) 815-830.
DOI URL |
[39] | K. Xia, J.T. Wang, A Phys. metall. Mater. Sci. 32 (10)(2001) 2639. |
[40] |
M. Furukawa, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 332 (1)(2002) 97-109.
DOI URL |
[41] |
Y. Tian, W. Han, H. Yang, S. Li, S. Wu, Z. Zhang, Scr. Mater. 62 (4)(2010) 183-186.
DOI URL |
[42] |
V.S. Sarma, J. Wang, W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, Y. Zhu, Mater. Sci. Eng. A 527 (29)(2010) 7624-7630.
DOI URL |
[43] |
Y. Li, N. Tao, K. Lu, Acta Mater. 56 (2)(2008) 230-241.
DOI URL |
[44] | M. Berta, P. Apps, P. Prangnell, Mater. Sci. Eng. A 410 (2005) 381-385. |
[45] |
S. Mahajan, G. Chin, Acta Metall. 21 (10)(1973) 1353-1363.
DOI URL |
[46] |
E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 30 (5)(1999) 1223-1233.
DOI URL |
[47] |
C.J. Barr, D.T. McDonald, K. Xia, Metall. Mater. Trans. A 46 (9)(2015) 4202-4214.
DOI URL |
[48] |
G. Langford, Metall. Trans. A 8 (6)(1977) 861-875.
DOI URL |
[49] |
A. Baldan, J. Mater. Sci. 37 (11)(2002) 2171-2202.
DOI URL |
[1] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[2] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[3] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[4] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[5] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[6] | Wenqiang Li, Yiming Zhao, Ning Liu, Changji Li, Ruiming Ren, Dayong Cai, Hongwang Zhang. Strain gradient induced grain refinement far below the size limit in a low carbon hypoeutectoid steel (0.19wt% C) via pipe inner surface grinding treatment [J]. J. Mater. Sci. Technol., 2021, 78(0): 155-169. |
[7] | Jingyu Pang, Hongwei Zhang, Long Zhang, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Zhengkun Li, Haifeng Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping [J]. J. Mater. Sci. Technol., 2021, 78(0): 74-80. |
[8] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[9] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[10] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[11] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[12] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[13] | Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy [J]. J. Mater. Sci. Technol., 2021, 80(0): 84-99. |
[14] | Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH [J]. J. Mater. Sci. Technol., 2021, 64(0): 38-56. |
[15] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||