J. Mater. Sci. Technol. ›› 2021, Vol. 80: 84-99.DOI: 10.1016/j.jmst.2020.12.011
• Research Article • Previous Articles Next Articles
Yuliang Zhaoa,b,*(), Weiwen Zhangc,**(
), Dongfu Songc,d, Bo Line, Fanghua Shena,b, Donghai Zhenga,b, ChunXiao Xiea,b, Zhenzhong Suna,b, Yanan Fuf, Runxia Lig,**(
)
Received:
2020-09-27
Accepted:
2020-12-07
Published:
2020-12-25
Online:
2020-12-25
Contact:
Yuliang Zhao,Weiwen Zhang,Runxia Li
About author:
runxiali@163.com (R. Li).Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy[J]. J. Mater. Sci. Technol., 2021, 80: 84-99.
Alloy | Fe | Ti | V | B |
---|---|---|---|---|
Al-2Fe | 1.97 | 0.001 | 0.004 | - |
Al-2Fe + 0.2 %Al-5Ti-1B | 2.05 | 0.011 | 0.006 | 0.002 |
Table 1 Alloy composition without and with grain refiner in this study (wt.%).
Alloy | Fe | Ti | V | B |
---|---|---|---|---|
Al-2Fe | 1.97 | 0.001 | 0.004 | - |
Al-2Fe + 0.2 %Al-5Ti-1B | 2.05 | 0.011 | 0.006 | 0.002 |
Fig. 1. (a) The deep-etched SEM images showing the Al3Ti and TiB2 particles in the Al-5Ti-1B master alloys; (b) the measured size distribution of TiB2 particles and their log-normal distribution fitting; the enlarge SEM images and composition of Al3Ti particles (c) and TiB2 particles (d).
Fig. 2. (a) Experimental setup used at beamline BL13W1 in SSRF; (b) schematic diagram of in-situ synchrotron X-ray radiography setup and sample arrangement.
Experiment Parameters | In-situ X-ray radiography | X-ray tomography |
---|---|---|
X-ray Beam | monochromatic, 20 keV | monochromatic, 20 keV |
Scintillator | Optique Peter | Optique Peter |
Detector | Hamamatsu Orca Flash 4.0 v3 | Hamamatsu Orca Flash 4.0 v3 |
Effective pixel size | 0.65 μm and 6.5 μm | 0.65 μm |
Detector area | 2048 × 2048 pixels 2048 × 700 pixels | 2048 × 2048 pixels |
Exposure Time | 500 ms | 300 ms |
Magnification | 1 × and 10 × | 10 × |
No. of Projections | 1200 | 1200 |
Sample-to-Scintillator distance | 1000 mm | 200 mm |
Table 2 Synchrotron X-ray radiography and tomography parameters used at BL13W1, SSRF.
Experiment Parameters | In-situ X-ray radiography | X-ray tomography |
---|---|---|
X-ray Beam | monochromatic, 20 keV | monochromatic, 20 keV |
Scintillator | Optique Peter | Optique Peter |
Detector | Hamamatsu Orca Flash 4.0 v3 | Hamamatsu Orca Flash 4.0 v3 |
Effective pixel size | 0.65 μm and 6.5 μm | 0.65 μm |
Detector area | 2048 × 2048 pixels 2048 × 700 pixels | 2048 × 2048 pixels |
Exposure Time | 500 ms | 300 ms |
Magnification | 1 × and 10 × | 10 × |
No. of Projections | 1200 | 1200 |
Sample-to-Scintillator distance | 1000 mm | 200 mm |
Fig. 3. SEM images and tomoscans of Fe-rich phases in the Al-2Fe alloys with different Al-5Ti-1B grain refiner and applied pressures: (a-b) NGR-NAP; (c-d) NGR-AP; (e-f) GR-NAP; (g-h) GR-AP.
Alloys | Alloy compositions | Identified Phases | |
---|---|---|---|
Al | Fe | ||
NGR-NAP | 78.0 ± 0.5 | 22.0 ± 0.9 | Al3Fe |
NGR-AP | 84.7 ± 0.9 | 15.3 ± 0.7 | Al3Fe |
88.9 ± 0.8 | 11.1 ± 0.3 | Al6Fe | |
GR-NAP | 83.3 ± 0.7 | 16.7 ± 0.4 | Al3Fe |
89.3 ± 0.3 | 10.7 ± 0.8 | Al6Fe | |
GR-AP | 81.6 ± 0.3 | 18.4 ± 0.4 | Al3Fe |
92.0 ± 0.9 | 8.0 ± 0.3 | Al6Fe |
Table 3 Chemical composition of Fe-rich phases in different alloys.
Alloys | Alloy compositions | Identified Phases | |
---|---|---|---|
Al | Fe | ||
NGR-NAP | 78.0 ± 0.5 | 22.0 ± 0.9 | Al3Fe |
NGR-AP | 84.7 ± 0.9 | 15.3 ± 0.7 | Al3Fe |
88.9 ± 0.8 | 11.1 ± 0.3 | Al6Fe | |
GR-NAP | 83.3 ± 0.7 | 16.7 ± 0.4 | Al3Fe |
89.3 ± 0.3 | 10.7 ± 0.8 | Al6Fe | |
GR-AP | 81.6 ± 0.3 | 18.4 ± 0.4 | Al3Fe |
92.0 ± 0.9 | 8.0 ± 0.3 | Al6Fe |
Fig. 4. Deep-etched morphology of Fe-rich phases in the Al-2Fe alloys with different conditions: (a-c) NGR-NAP; (d-f) NGR-AP; (g-i) GR-NAP; (j-l) GR-AP.
Fig. 5. (a) Typical 3D morphology of Fe-rich phases in Al-2Fe alloy without Al-5Ti-1B; (b) EDS analysis of point 1 and 2 in.(a); (c) X-ray diffraction patterns of Al-2Fe alloy without Al-5Ti-1B under 0 MPa and 100 MPa.
Fig. 6. EBSD images showing the grain size of Al-2Fe alloys with different conditions: (a) NGR-NAP; (b) NGR-AP; (c) GR-NAP; (d) GR-AP; SEM image (e) and Kikuchi pattern of Al3Fe (f) and Al6Fe (g) in GR-NAP alloy.
Fig. 7. (a) A SEM images of primary Al3Fe in Al-2Fe alloy; (b) EBSD images of Al3Fe phases and Al matrix; (c) An inverse pole figure of twinned Al3Fe phases.
Fig. 10. In-situ synchrotron X-ray radiography showing the growth of Fe-rich phases in the 0.2 % Al-5Ti-1B inoculated Al-2Fe alloy during solidification.
Fig. 11. In-situ synchrotron X-ray radiography showing the growth of Fe-rich phases in the 0.2 % Al-5Ti-1B inoculated Al-2Fe alloy during solidification with 10 times lens.
Fig. 12. 3D morphology and thickness of primary Fe-rich phases in Al-2Fe alloy: (a, b) NGR-NAP; (c, d) NGR-AP; (e, f) GR-NAP; (g, h) GR-AP; Typical single 3D morphology of primary Fe-rich phases: (h) plate-like; (i, j) rod-like; (k) cross-like.
Alloys | Area (μm2) | Volume (μm3) | Specific surface area (μm-1) |
---|---|---|---|
NGR-NAP | 1,002,003 | 913,869 | 1.09 |
NGR-AP | 664,976 | 639,615 | 1.03 |
GR-NAP | 703,866 | 774,337 | 0.91 |
GR-AP | 587,674 | 703,961 | 0.83 |
Table 4 Volume statistics of primary Al3Fe obtained from synchrotron X-ray tomography in different alloys.
Alloys | Area (μm2) | Volume (μm3) | Specific surface area (μm-1) |
---|---|---|---|
NGR-NAP | 1,002,003 | 913,869 | 1.09 |
NGR-AP | 664,976 | 639,615 | 1.03 |
GR-NAP | 703,866 | 774,337 | 0.91 |
GR-AP | 587,674 | 703,961 | 0.83 |
Fig. 13. (a) SEM image showing the possible nucleation sites for Fe-rich phases in Al-2Fe alloy with Al-5Ti-1B; (b) EDS mapping analysis confirming Ti-rich phases inside Fe-rich phase; (c) cross-section of thin foil after milled by FIB; (d) EDX mapping of the of thin foil; (e, f) bright-field TEM micrograph obtained in [101]Al zone axis showing the Al/Al6Fe interface in region A; (g) inverse FFT of Al matrix and corresponding diffraction pattern.
Fig. 14. (a) TEM image taken from region c in Fig. 12c, showing the TiB2/Al/Al6Fe interface; (b) HRTEM image obtained in [001]Al zone axis showing the orientation relationship of Al/TiB2 interface and corresponding diffraction patterns; (c) HRTEM image of Al6Fe/TiB2 interface and the diffraction pattern of Al6Fe phases; (d) HADDF micrograph showing the TiB2/Al/Al6Fe interface; (e) EDX mapping of the TiB2/Al/Al6Fe interface; (f, g) EDX line scanning of the TiB2/Al/Al6Fe interface.
Fig. 15. Length and width of primary Al3Fe phases in Al-2Fe alloys (a) without Al-5Ti-1B and (c) with Al-5Ti-1B vs solidification time; the growth rate of primary Al3Fe phases in Al-2Fe alloys (b) without Al-5Ti-1B and (d) with Al-5Ti-1B vs solidification time; (e) the total number of primary Al3Fe in both alloys vs solidification time.
[1] | J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications, ASM International, Materials Park, OH, 2004. |
[2] | N.A. Belov, A.A. Aksenov, D.G. Eskin, Iron in Aluminum Alloys: Impurity and Alloying Element, CRC Press, London, 2002. |
[3] | J.A.S. Green, Aluminum Recycling and Processing for Energy Conservation and Sustainability, ASM International, Materials Park, OH, 2007. |
[4] | L.F. Zhang, J.W. Gao, L.N.W. Damoah, D.G. Robertson, Mine. Process. Extr. M. 33 (2012) 99-157. |
[5] |
X.L. Li, A. Scherf, M. Heilmaier, F. Stein, J. Phase Equilib. Diff. 37 (2016) 162-173.
DOI URL |
[6] |
D. Liang, P. Korgul, H. Jones, Acta Mater. 44 (1996) 2999-3004.
DOI URL |
[7] |
C.A. Ahravct, M.Ö. Pekguleryüz, Calphad 22 (1998) 147-l55.
DOI URL |
[8] |
P.R. Goulart, K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, J. Alloys. Compd. 470 (2009) 589-599.
DOI URL |
[9] |
Y.H. Liang, Z.M. Shi, G.W. Li, R.Y. Zhang, G. Zhao, J. Alloys. Compd. 781 (2019) 235-244.
DOI URL |
[10] | Y.H. Liang, Z.M. Shi, G.W. Li, R.Y. Zhang, M. Li, Mater. Res. Express 6 (2019), 106504. |
[11] |
X. Wang, R.G. Guan, Y. Wang, R.D.K. Misra, B.W. Yang, Y.D. Li, T.J. Chen, Mater. Sci. Eng. A 751 (2019) 23-34.
DOI URL |
[12] |
J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.W. Li, Z.F. Zhang, Materialia 7 (2019), 100403.
DOI URL |
[13] |
B. Lin, W.X. Zhang, X.P. Zheng, Y.L. Zhao, Z.H. Lou, W.W. Zhang, Mater. Charact. 150 (2019) 128-137.
DOI |
[14] |
X.Z. Zhu, P. Blake, K. Dou, S.X. Ji, Mater. Sci. Eng. A 732 (2018) 240-250.
DOI URL |
[15] |
Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Mater. Sci. Eng. A 632 (2015) 62-71.
DOI URL |
[16] |
A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou, A. Deschamps, F.D. Geuser, Acta Mater. 167 (2019) 89-102.
DOI |
[17] |
Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater. 84 (2015) 292-304.
DOI URL |
[18] | M.A. Easton, M. Qian, A. Prasad, D.H. StJohn, Curr.Opin. St. M. 20 (2016) 13-24. |
[19] |
L. Zhou, F. Gao, G.S. Peng, N. Alba-Baena, J. Alloys. Compd. 689 (2016) 401-407.
DOI URL |
[20] |
E.Z. Wang, T. Gao, J.F. Nie, X.F. Liu, J. Alloys. Compd. 594 (2014) 7-11.
DOI URL |
[21] |
J. Santos, L.H. Kallien, A.E.W. Jarfors, A.K. Dahle, Metall. Mater. Trans. A 47 (2016) 4080-4091.
DOI URL |
[22] |
H.G. Wei, F.Z. Xia, M.P. Wang, Mater. Sci. Eng. A 682 (2017) 1-11.
DOI URL |
[23] | A.B. Pattnaika, S. Dasa, B.B. Jhab, N. Prasantha, J. Mater. Res, Technol. 4 (2015) 171-179. |
[24] |
Q.L. Bai, Y. Li, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang, Metall. Mater. Trans. A 47 (2016) 4080-4091.
DOI URL |
[25] | Z.P. Que, Y. Wang, Y.P. Zhou, L. Liu, Z. Fan, Mater. Sci.Forum 828-829 (2015) 53-57. |
[26] |
J. Rakhmonov, G. Timelli, F. Bonollo, Int. J. Metalcast. 11 (2017) 294-304.
DOI URL |
[27] | S. Kumar, K.A.Q. O’Reilly, Mater.Charact. 120 (2016) 311-322. |
[28] |
S.H. Rodríguez, R.E.G. Reyes, D.K. Dwivedi, O.A. González, V.H.B. Hernández, Mater. Manuf. Process. 27 (2012) 599-604.
DOI URL |
[29] |
Y. Li, B. Hu, B. Liu, A.M. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[30] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[31] |
J. Xu, Y. Li, K. Ma, Y.N. Fu, E.Y. Guo, Z.N. Chen, Q.F. Gu, Y.X. Han, T.M. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[32] |
B. Dang, X. Zhang, Y.Z. Chen, C.X. Chen, H.T. Wang, F. Liu, Sci. Rep. 6 (2016) 30874.
DOI PMID |
[33] | M.W. Meredith, A.L. Greer, P.V. Evans, USA, 1998, pp. 977-982. |
[34] |
R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollet, Science 363 (2019) 849-852.
DOI PMID |
[35] |
H. Yasuda, K. Morishita, N. Nakatsuka, T. Nishimura, M. Yoshiya, A. Sugiyama, K. Uesugi, A. Takeuchi, Nat. Commun. 10 (2019) 3183.
DOI URL |
[36] |
B. Wang, D.Y. Tan, T.L. Lee, J.C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, J.W. Mi, Acta Mater. 144 (2018) 505-515.
DOI URL |
[37] | E. Liotti, C. Arteta, A. Zisserman, A. Lui, V. Lempitsky, P.S. Grant, Sci. Adv. 4 (2018), eaar4004. |
[38] | S. Feng, E. Liotti, A. Lui, S. Kumar, A. Mahadevegowda, K.A.Q.O, Reilly, P.S. Grant, Scr.Mater. 149 (2018) 44-48. |
[39] |
A. Bjurenstedt, D. Casari, S. Seifeddine, R.H. Mathiesen, A.K. Dahle, Acta Mater. 130 (2017) 1-9.
DOI URL |
[40] |
B. Cai, A. Kao, P.D. Lee, E. Boller, H. Basevi, A.B. Phillion, A. Leonardis, K. Pericieous, Scr. Mater. 165 (2019) 29-33.
DOI URL |
[41] |
C. Puncreobutr, A.B. Phillion, J.L. Fife, P. Rockett, A.P. Horsfield, P.D. Lee, Acta Mater. 79 (2014) 292-303.
DOI URL |
[42] |
J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Markötter, A. Manzoni, F. Vogel, T. Arlt, I. Manke, J. Banhart, Acta Mater. 129 (2017) 194-202.
DOI URL |
[43] | S. Chuaypradit, C. Puncreobutr, A.B. Phillion, J.L. Fife, P.D. Lee, Quantifying the effects of grain refiner addition on the solidification of Fe-rich intermetallics in Al-Si-Cu alloys using in situ synchrotron X-ray tomography, TMS Annual Meeting & Exhibition TMS 2018: Light Metals (2018) 1067-1073. |
[44] |
R.C. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon, T.Q. Xiao, R. Longo, J. Synchrotron Rad. 19 (2012) 836-845.
DOI URL |
[45] |
Y. Zhao, W. Du, B. Koe, T. Connolley, S. Irvine, P.K. Allan, C.M. Schlepütz, W. Zhang, F. Wang, D.G. Eskin, J. Mi, Scr. Mater. 146 (2018) 321-326.
DOI URL |
[46] |
Y.L. Zhao, Z. Wang, C. Zhang, W.W. Zhang, J. Alloys. Compd. 777 (2019) 1054-1065.
DOI URL |
[47] |
Y.L. Zhao, D.F. Song, B. Lin, C. Zhang, D.H. Zheng, S. Inguva, T. Li, Z.Z. Sun, Z. Wang, W.W. Zhang, Mater. Charact. 153 (2019) 354-365.
DOI URL |
[48] |
Y.L. Zhao, B. Lin, D.F. Song, D.H. Zheng, Z.Z. Sun, C.X. Xie, W.W. Zhang, Materials 12 (2019) 3904.
DOI URL |
[49] |
L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, J. Appl. Crystallogr. 43 (2010) 1108-1112.
DOI URL |
[50] |
W.W. Zhang, Y.L. Zhao, D.T. Zhang, Z.Q. Luo, C. Yang, Y.Y. Li, Trans. Nonferrous Met. Soc. China 28 (2018) 1061-1072.
DOI URL |
[51] | Y.L. Zhao, W.W. Zhang, C. Yang, D.T. Zhang, Z. wang, J.Mater. Res. 33 (2018) 898-911. |
[52] |
C.M. Adam, L.M. Hogan, Acta Metall. 23 (3) (1975) 345-354.
DOI URL |
[53] |
M.A. Mohtadi-Bonab, M. Eskandari, J.A. Szpunar, Mater. Sci. Eng. A 620 (2015) 97-106.
DOI URL |
[54] |
M. Kamaya, Mater. Charact. 60 (2009) 125-132.
DOI URL |
[55] |
Z.Y. Ding, Q.D. Hu, W.Q. Lu, X. Ge, S. Cao, S.Y. Sun, T.X. Yang, M.X. Xia, J.G. Li, Mater. Charact. 136 (2018) 157-164.
DOI URL |
[56] |
C.M. Allen, K.A.Q. O’Reilly, P.V. Evans, B. Cantor, Acta Mater. 47 (1999) 4387-4403.
DOI URL |
[57] |
A. Khaliq, M.A. Rhamdhani, G.A. Brooks, J. Grandfield, Metall. Mater. Trans. B 45 (2014) 784-794.
DOI URL |
[58] |
Y.P. Pang, Q. Li, Int. J. Hydrogen Energ. 41 (2016) 18072-18087.
DOI URL |
[59] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[60] | Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magnes. Alloys 7 (2019) 58-71. |
[61] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci, Technol. 44 (2020) 171-190. |
[62] |
D.R. Hamilton, R.G. Seidensticker, J. Appl. Phys. 31 (7) (1960) 1165-1168.
DOI URL |
[63] |
M.A. Easton, D.H. StJohn, Acta Mater. 49 (2001) 1867-1878.
DOI URL |
[64] |
A. Lui, P.S. Grant, I.C. Stone, K.A.Q.O.’ Reilly, Metall. Mater. Trans. A 50 (2019) 5242-5252.
DOI URL |
[65] |
X.F. Gu, T. Furuhara, W.Z. Zhang, J. Appl. Cryst. 49 (2016) 1099-1106.
DOI URL |
[1] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[2] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[3] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[4] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[5] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[6] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[7] | Wenqiang Li, Yiming Zhao, Ning Liu, Changji Li, Ruiming Ren, Dayong Cai, Hongwang Zhang. Strain gradient induced grain refinement far below the size limit in a low carbon hypoeutectoid steel (0.19wt% C) via pipe inner surface grinding treatment [J]. J. Mater. Sci. Technol., 2021, 78(0): 155-169. |
[8] | Jingyu Pang, Hongwei Zhang, Long Zhang, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Zhengkun Li, Haifeng Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping [J]. J. Mater. Sci. Technol., 2021, 78(0): 74-80. |
[9] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[10] | X.Y. Jiao, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 54-62. |
[11] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 183-189. |
[12] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 7-13. |
[13] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37(0): 38-45. |
[14] | Jianlu Pei, Yefan Li, Chong Li, Zumin Wang, Yongchang Liu, Huijun Li. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 162-171. |
[15] | Hao Jin, Qing Jia, Quangang Xian, Ronghua Liu, Yuyou Cui, Dongsheng Xu, Rui Yang. Seeded growth of Ti-46Al-8Nb polysynthetically twinned crystals with an ultra-high elongation [J]. J. Mater. Sci. Technol., 2020, 54(0): 190-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||