J. Mater. Sci. Technol. ›› 2020, Vol. 51: 54-62.DOI: 10.1016/j.jmst.2020.02.040
• Research Article • Previous Articles Next Articles
X.Y. Jiaoa, C.F. Liua, Z.P. Guoa,b,*(), G.D. Tongc, S.L. Mac, Y. Bic, Y.F. Zhangc, S.M. Xionga,b,*(
)
Received:
2019-12-18
Revised:
2020-01-09
Accepted:
2020-04-05
Published:
2020-08-15
Online:
2020-08-11
Contact:
Z.P. Guo,S.M. Xiong
X.Y. Jiao, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy[J]. J. Mater. Sci. Technol., 2020, 51: 54-62.
Phase | Crystal structure | Space group | Lattice constant | Morphology | Nucleation position | Reference |
---|---|---|---|---|---|---|
β-Al5FeSi | Monoclinic | A12/a1, I41/acd | a = 0.616 b = 0.618 c = 2.081 β = 90.42 | Plate-shaped | High Fe content and slow cooling speed | [ |
δ-Al4FeSi2 | Orthorhombic | I4/mcm | a = 0.615 b = 0.615 c = 0.952 | Needle-like shaped | Relatively high cooling speed | [ |
α-Al8Fe2Si | Hexagonal | P63/mmc | a = 1.24 c = 2.63 | Polyhedral-shaped | High Fe content and slow cooling speed | [ |
α-Al15Fe3Si2 | Cubic | Im3¯ | a = 1.253 | Polyhedral-shaped, Chinese script-type | High cooling speed and Mn addition | [ |
Table 1 Summary of Fe-rich phases in hypoeutectic Al-Si alloys.
Phase | Crystal structure | Space group | Lattice constant | Morphology | Nucleation position | Reference |
---|---|---|---|---|---|---|
β-Al5FeSi | Monoclinic | A12/a1, I41/acd | a = 0.616 b = 0.618 c = 2.081 β = 90.42 | Plate-shaped | High Fe content and slow cooling speed | [ |
δ-Al4FeSi2 | Orthorhombic | I4/mcm | a = 0.615 b = 0.615 c = 0.952 | Needle-like shaped | Relatively high cooling speed | [ |
α-Al8Fe2Si | Hexagonal | P63/mmc | a = 1.24 c = 2.63 | Polyhedral-shaped | High Fe content and slow cooling speed | [ |
α-Al15Fe3Si2 | Cubic | Im3¯ | a = 1.253 | Polyhedral-shaped, Chinese script-type | High cooling speed and Mn addition | [ |
Si | Fe | Cu | Mn | Mg | Zn | V | Ti | Sr | Al |
---|---|---|---|---|---|---|---|---|---|
9.5-11.5 | < 0.15 | < 0.03 | 0.5-0.8 | 0.1-0.5 | < 0.07 | < 0.07 | 0.04-0.15 | 0.01-0.025 | Bal. |
Table 2 The chemical composition of the AlSi10MnMg hypoeutectic Al-Si alloy (wt.%).
Si | Fe | Cu | Mn | Mg | Zn | V | Ti | Sr | Al |
---|---|---|---|---|---|---|---|---|---|
9.5-11.5 | < 0.15 | < 0.03 | 0.5-0.8 | 0.1-0.5 | < 0.07 | < 0.07 | 0.04-0.15 | 0.01-0.025 | Bal. |
Fig. 1. The configuration of (a) HPDC casting including two tensile test bars and four plates; (b) tensile test bar and sample extraction locations for OM, SEM, TEM, EPMA and synchrotron X-ray tomography; (c) tensile test plate and (d) in-situ tensile test specimen.
Melting temperature (°C) | Initial mold temperature (°C) | Slow-shot speed (m/s) | Vacuum condition |
---|---|---|---|
680 | 120 | 0.05, 0.4 | On |
Table 3 The key processing parameters in HPDC.
Melting temperature (°C) | Initial mold temperature (°C) | Slow-shot speed (m/s) | Vacuum condition |
---|---|---|---|
680 | 120 | 0.05, 0.4 | On |
Fig. 2. Optical micrograph (a) of the cross section of the rod for the HPDC AlSi10MnMg alloy, (b) along the radial direction and corresponding local microstructure (b1) - (b5). (c) Area fraction of ESCs, eutectic and Al grains in five different regions. (d) EPMA liner-scan results of Mn and Fe elements, EPMA map-scan results of (e) Mn and (f) Fe in five different regions.
Fig. 3. SEM observation of (a) and (b) three kind of Fe-rich phases with different shape including coarse blocky shape, fine compact shape and net shape. TEM bright-field image of (c) fine compact Fe-rich phase and (d) Chinese script-type Fe-rich phase and corresponding selected area diffraction pattern of (e) [377]α and (f)[256]α, respectively.
Fig. 4. (a) shows the distribution of Fe-rich phases along the radial direction (from surface to center); (b), (c) and (d) show the 3-D morphology of Fe-rich phases in HPDC; (e), (f) and (g) show the SEM results of the morphology of Fe-rich phases corresponding to (b), (c) and (d), respectively.
Phase shape | xAl[at.%] | xSi[at.%] | xMn[at.%] | xFe[at.%] | xMn/xFe |
---|---|---|---|---|---|
Polyhedral shape | 69.24 | 11.40 | 16.91 | 2.45 | 6.9:1 |
Fine compact shape | 86.69 | 5.88 | 6.28 | 1.15 | 5.5:1 |
Chinese script-type | 85.64 | 4.74 | 7.20 | 2.42 | 3:1 |
Table 4 Chemical composition of Fe-rich phases in HPDC AlSi10MnMg alloy.
Phase shape | xAl[at.%] | xSi[at.%] | xMn[at.%] | xFe[at.%] | xMn/xFe |
---|---|---|---|---|---|
Polyhedral shape | 69.24 | 11.40 | 16.91 | 2.45 | 6.9:1 |
Fine compact shape | 86.69 | 5.88 | 6.28 | 1.15 | 5.5:1 |
Chinese script-type | 85.64 | 4.74 | 7.20 | 2.42 | 3:1 |
Fig. 5. (a) 3D volume distribution of Fe-rich phases, (b) 3D volume distribution of a sub-volume of 1500 μm3 - 6000 μm3. The equivalent diameter of Fe-rich phases versus the shape factor at different slow-shot speeds of (c) Vl = 0.05 m/s and (d) Vl = 0.4 m/s.
Fig. 7. EPMA analysis for (a) Al, (b) Si, (c) Fe and (d) Mn elements in polyhedral Fe-rich phase. Inner area of polyhedral Fe-rich phase (e) and the chemical composition of (f) P1 and (g) P2.
Fig. 8. The polyhedral Fe-rich (a) and the fracture morphology, (b)-(d) related to polyhedral Fe-rich phases. Polyhedral Fe-rich phase under (e) 0 N and (f) 410 N. Shrinkage under (g) 410 N.
Alloy | Tensile strength (σ) | Average crack length (a) | Geometry factor (Y) | Stress intensity factors (KI) |
---|---|---|---|---|
Shrinkage | 230 MPa | 50 μm | 1 | 2.88 MPa⋅m |
Planar Si particle | 230 MPa | 2 μm | 1 | 0.58 MPa⋅m |
Polyhedral Fe-rich phase | 230 MPa | 10 μm | 1 | 1.29 MPa·m |
Table 5 Stress intensity factor of shrinkage, planar Si and polyhedral Fe-rich phase.
Alloy | Tensile strength (σ) | Average crack length (a) | Geometry factor (Y) | Stress intensity factors (KI) |
---|---|---|---|---|
Shrinkage | 230 MPa | 50 μm | 1 | 2.88 MPa⋅m |
Planar Si particle | 230 MPa | 2 μm | 1 | 0.58 MPa⋅m |
Polyhedral Fe-rich phase | 230 MPa | 10 μm | 1 | 1.29 MPa·m |
[1] | L. Zhu, F. Qiu, D. Qiu, T. Duan, F. Chang, T. Li, S. Shu, H. Yang, Y. He, Q. Jiang , Mater. Sci. Eng. A, 751(2019), pp. 90-98. |
[2] | F. Guo, W. Wang, W. Yu, Y. Zhang, S. Pan, Z. Zhou, D. Liu, J. Qin, Y. Wang, X. Tian , Mater. Des., 117(2017), pp. 382-389. |
[3] | K. Wang, H.Y. Jiang, Y.X. Wang, Q.D. Wang, B. Ye, W.J. Ding , Mater. Des., 95(2016), pp. 545-554. |
[4] | Z. Chen, X. Hao, Y. Wang, K. Zhao, J. Mater. Sci. Technol., 30(2014), pp. 139-145. |
[5] | I. Aguilera-Luna, M.J. Castro-Román, J.C. Escobedo-Bocardo, F.A. García-Pastor, M. Herrera-Trejo, Mater. Charact., 95(2014), pp. 211-218. |
[6] | J.Y. Wang, B.J. Wang, L.F. Huang, J. Mater. Sci. Technol., 33(2017), pp. 1235-1239. |
[7] | X.Y. Jiao, J. Wang, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong, J. Mater. Sci. Technol., 35(2019), pp. 1099-1107. |
[8] | X.J. Wang, L.C. Zhang, M.H. Fang, T.B. Sercombe , Mater. Sci. Eng. A, 597(2014), pp. 370-375. |
[9] | X. Li, S.M. Xiong, Z. Guo, J. Mater. Process. Technol., 231(2016), pp. 1-7. |
[10] | X.Y. Jiao, J. Wang, C. Liu, Z. Guo, J. Wang, Z. Wang, J. Gao, S.M. Xiong, J. Mater. Process. Technol., 268(2019), pp. 63-69. |
[11] | X. Li, S. Xiong, Z. Guo , Acta Metall. Sin-Engl., 29(2016), pp. 619-628. |
[12] | J. Wang, Z. Guo, X.Y. Jiao, S.M. Xiong , Mater. Charact., 140(2018), pp. 179-188. |
[13] | L. Zhang, J. Gao, L.N.W. Damoah, D.G. Robertson, Min. Proc. Ext. Met. Rev., 33(2012), pp. 99-157. |
[14] | C.M. Dinnis, J.A. Taylor, A.K. Dahle , Scripta Mater., 53(2005), pp. 955-958. |
[15] | Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, P. Osmond, D. Balloy , Mater. Sci. Eng. A, 689(2017), pp. 286-297. |
[16] | M. Sha, S. Wu, L. Wan , Mater. Sci. Eng. A, 554(2012), pp. 142-148. |
[17] | A. koláková, P. Novák, D. Vojtěch, T.F. Kubatík , Mater. Des., 107(2016), pp. 491-502. |
[18] | H. Becker, T. Bergh, P.E. Vullum, A. Leineweber, Y. Li , Materialia, 5 ( 2019),Article 100198. |
[19] | A.P.A.M. Samuelt , Int. J. Cast Metals Res. (pp). 231-253. |
[20] | A. Gorny, J. Manickaraj, Z. Cai, S. Shankar, J. Alloys. Compd., 577(2013), pp. 103-124. |
[21] | S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, A.K. Dahle , Acta Mater., 58(2010), pp. 5370-5380. |
[22] | J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Marktter, A. Manzoni, F. Vogel, T. Arlt, I. Manke, J. Banhart, Acta Mater., 129(2017), pp. 194-202. |
[23] | P. Orozco-González, M. Castro-Román, J. López-Cuevas, A. Hernández-Rodríguez, R. Muiz-Valdez, S. Luna-álvarez, C. Ortiz-Cuellar, Rev. Metal. Madrid, 47(2011), pp. 453-461. |
[24] | A.K. Srivastava, V.C. Srivastava, A. Gloter, S.N. Ojha , Acta Mater., 54(2006), pp. 1741-1748. |
[25] | J. Wang, Z. Guo, J.L. Song, W.X. Hu, J.C. Li, S.M. Xiong , Mater. Des., 137(2018), pp. 176-183. |
[26] | INFN Trieste ,PITRE,2013 http://webint.ts.infn.it/en/research/exp/beats2/pitre.html . |
[27] | FEIAmira-Avizo 3D Software , 2017http://www.fei.com/software/avizo3d/ . |
[28] | X. Li, S.M. Xiong, Z. Guo , Mater. Sci. Eng. A, 674(2016), pp. 687-695. |
[29] | K. Chanyathunyaroj, U. Patakham, S. Kou, C. Limmaneevichitr, J. Alloys. Compd., 692(2017), pp. 865-875. |
[30] | S. Ji, W. Yang, F. Gao, D. Watson, Z. Fan , Mater. Sci. Eng. A, 564(2013), pp. 130-139. |
[31] | W. Yang, S. Ji, X. Zhou, I. Stone, G. Scamans , Metall. Mater. Trans. A, 45A(2014), pp. 3971-3980. |
[32] | X. Li, S.M. Xiong, Z. Guo , Mater. Sci. Eng. A, 672(2016), pp. 216-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||