J. Mater. Sci. Technol. ›› 2020, Vol. 51: 40-53.DOI: 10.1016/j.jmst.2020.03.024
• Research Article • Previous Articles Next Articles
Mingna Wanga, Chuang Qiaob,c, Xiaolin Jiangb, Long Haoa,d,*(), Xiahe Liub
Received:
2019-12-23
Revised:
2020-02-27
Accepted:
2020-03-08
Published:
2020-08-15
Online:
2020-08-11
Contact:
Long Hao
Mingna Wang, Chuang Qiao, Xiaolin Jiang, Long Hao, Xiahe Liu. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere[J]. J. Mater. Sci. Technol., 2020, 51: 40-53.
Ag | Cu | Pb | Sb | In | Fe | As | Ni | Sn |
---|---|---|---|---|---|---|---|---|
2.95 | 0.466 | 0.019 | 0.019 | 0.004 | 0.001 | 0.001 | 0.005 | Bal. |
Table 1 Composition of the as-received commercial SAC305 solder (wt.%).
Ag | Cu | Pb | Sb | In | Fe | As | Ni | Sn |
---|---|---|---|---|---|---|---|---|
2.95 | 0.466 | 0.019 | 0.019 | 0.004 | 0.001 | 0.001 | 0.005 | Bal. |
Fig. 1. Schematic diagram in illustrating two-electrode system used for in-situ EIS measurement. (a) Top view of the comb-like electrodes. (b) Arrangement in illustrating functions of the electrodes.
Fig. 4. Potentiodynamic polarization curves of furnace-cooled (a-d) and as-received (a'-d') SAC305 samples as a function of CCT cycle in simulated high-temperature marine atmosphere with various RH and NaCl concentration.
Sample | 70% RH and 2.0 wt.% NaCl | 80% RH and 2.0 wt.% NaCl | 70% RH and 3.5 wt.% NaCl | 80% RH and 3.5 wt.% NaCl | ||||
---|---|---|---|---|---|---|---|---|
Furnace-cooled | As-received | Furnace-cooled | As-received | Furnace-cooled | As-received | Furnace-cooled | As-received | |
1 CCT | 5.00 | 2.33 | 4.18 | 3.38 | 0.93 | 2.28 | 10.0 | 1.35 |
2 CCT | 2.88 | 6.61 | 22.0 | 5.78 | 1.96 | 2.22 | 3.79 | 1.54 |
3 CCT | 6.20 | 6.41 | 77.7 | 16.3 | 4.67 | 1.52 | 5.71 | 8.59 |
Table 2 Obtained corrosion current density icorr (μA cm-2) from each polarization curve in Fig. 4.
Sample | 70% RH and 2.0 wt.% NaCl | 80% RH and 2.0 wt.% NaCl | 70% RH and 3.5 wt.% NaCl | 80% RH and 3.5 wt.% NaCl | ||||
---|---|---|---|---|---|---|---|---|
Furnace-cooled | As-received | Furnace-cooled | As-received | Furnace-cooled | As-received | Furnace-cooled | As-received | |
1 CCT | 5.00 | 2.33 | 4.18 | 3.38 | 0.93 | 2.28 | 10.0 | 1.35 |
2 CCT | 2.88 | 6.61 | 22.0 | 5.78 | 1.96 | 2.22 | 3.79 | 1.54 |
3 CCT | 6.20 | 6.41 | 77.7 | 16.3 | 4.67 | 1.52 | 5.71 | 8.59 |
Fig. 6. Evolution in obtained Rp within each CCT cycle from 1 CCT to 5 CCT for as-received and furnace-cooled SAC305 samples in simulated marine atmosphere of 80% RH and 3.5 wt.% NaCl at 45 °C.
Fig. 7. Bode plots of in-situ EIS results for as-received SAC305 and furnace-cooled SAC305 as a function of exposure time in simulated marine atmosphere with 80% RH and 3.5 wt.% NaCl at 45 °C: (a) and (c) modulus plot; (b) and (d) phase angle plot.
Fig. 8. Equivalent electrical circuit for selected in-situ EIS data of as-received and furnace-cooled SAC305 solder samples as a function of exposure time: (a) 0 h and 48 h; (b) 96 h, 144 h and 192 h. (Rs: solution resistance; Ro and CPEo: resistance and CPE impedance of corrosion product layer; Rct and CPEdl: resistance and CPE impedance of electrical double layer at the interface of corrosion product layer and solder substrate; W: Warburg diffusion impedance at the interface of corrosion product layer and solder substrate).
Solder | Corrosion time (h) | Rs (Ω cm2) | Ro (Ω cm2) | Qo×10-6 (F cm-2 sn-1) | no | Rct (kΩ cm2) | Qdl×10-6 (F cm-2 sn-1) | ndl | Rw × 10-4 (Ω cm2 s0.5) | χ2×10-4 |
---|---|---|---|---|---|---|---|---|---|---|
As-received SAC305 | 0 | 5.44 | 650.1 | 7.296 | 0.877 | 45.01 | 9.565 | 0.836 | 1.444 | 6.18 |
48 | 4.44 | 245.4 | 19.40 | 0.607 | 39.43 | 21.99 | 0.562 | 1.532 | 8.53 | |
96 | 7.52 | 586.7 | 19.06 | 0.615 | 29.96 | 25.19 | 0.623 | / | 9.95 | |
144 | 10.6 | 1185 | 47.83 | 0.587 | 23.93 | 53.97 | 0.791 | / | 9.89 | |
192 | 4.24 | 548.3 | 53.58 | 0.525 | 18.19 | 14.08 | 0.670 | / | 8.95 | |
Furnace-cooled SAC305 | 0 | 5.98 | 1039 | 7.992 | 0.858 | 72.26 | 5.667 | 0.818 | 0.841 | 9.12 |
48 | 9.16 | 895.0 | 10.86 | 0.704 | 14.44 | 51.05 | 0.573 | 8.298 | 4.60 | |
96 | 13.2 | 500.1 | 54.81 | 0.571 | 11.77 | 55.88 | 0.634 | / | 9.76 | |
144 | 12.3 | 795.4 | 62.10 | 0.579 | 8.142 | 86.35 | 0.580 | / | 8.36 | |
192 | 12.6 | 469.2 | 92.36 | 0.540 | 7.401 | 96.28 | 0.712 | / | 8.72 |
Table 3 Fitting results of the EIS data of as-received and furnace-cooled SAC305 as a function of exposure time in simulated marine atmosphere of 80% RH and 3.5 wt.% NaCl at 45 °C.
Solder | Corrosion time (h) | Rs (Ω cm2) | Ro (Ω cm2) | Qo×10-6 (F cm-2 sn-1) | no | Rct (kΩ cm2) | Qdl×10-6 (F cm-2 sn-1) | ndl | Rw × 10-4 (Ω cm2 s0.5) | χ2×10-4 |
---|---|---|---|---|---|---|---|---|---|---|
As-received SAC305 | 0 | 5.44 | 650.1 | 7.296 | 0.877 | 45.01 | 9.565 | 0.836 | 1.444 | 6.18 |
48 | 4.44 | 245.4 | 19.40 | 0.607 | 39.43 | 21.99 | 0.562 | 1.532 | 8.53 | |
96 | 7.52 | 586.7 | 19.06 | 0.615 | 29.96 | 25.19 | 0.623 | / | 9.95 | |
144 | 10.6 | 1185 | 47.83 | 0.587 | 23.93 | 53.97 | 0.791 | / | 9.89 | |
192 | 4.24 | 548.3 | 53.58 | 0.525 | 18.19 | 14.08 | 0.670 | / | 8.95 | |
Furnace-cooled SAC305 | 0 | 5.98 | 1039 | 7.992 | 0.858 | 72.26 | 5.667 | 0.818 | 0.841 | 9.12 |
48 | 9.16 | 895.0 | 10.86 | 0.704 | 14.44 | 51.05 | 0.573 | 8.298 | 4.60 | |
96 | 13.2 | 500.1 | 54.81 | 0.571 | 11.77 | 55.88 | 0.634 | / | 9.76 | |
144 | 12.3 | 795.4 | 62.10 | 0.579 | 8.142 | 86.35 | 0.580 | / | 8.36 | |
192 | 12.6 | 469.2 | 92.36 | 0.540 | 7.401 | 96.28 | 0.712 | / | 8.72 |
Fig. 9. XRD results of surface corrosion product on as-corroded samples of as-received and furnace-cooled SAC305 solder after exposure to marine atmosphere of 80% RH and 3.5 wt.% NaCl for 192 h.
Fig. 10. Surface and cross-sectional morphologies of as-corroded SAC305 solder samples after exposure to simulated marine atmosphere with 80% RH and 3.5 wt.% NaCl at 45 °C for 192 h: (a) and (b) as-received sample; (c) and (d) furnace-cooled sample.
Fig. 11. EPMA mapping on cross-sectional profile of corrosion product layer on as-received SAC305 sample after exposure to the simulated marine atmosphere of 80% RH and 3.5 wt.% NaCl at 45 °C for 192 h.
Fig. 12. EPMA mapping of cross-sectional profile of the corrosion product layer on furnace-cooled SAC305 sample after exposure to the simulated marine atmosphere of 80% RH and 3.5 wt.% NaCl at 45 °C for 192 h.
[1] | G.Y. Liu, S. Khorsand, S.X. Ji, J. Mater , Sci. Technol., 35(2019), pp. 1618-1628. |
[2] | Z. Shen, M.H. Peng, D.S. Zhu, T.X. Zheng, Y.B. Zhong, W.L. Ren, C.J. Li, W.D. Xuan, Z.M. Ren, J. Mater. Sci. Technol., 35(2019), pp. 568-577. |
[3] | Y. Li, K. Moon, C. Wong , Science, 308(2005), pp. 1419-1420. |
[4] | M.O.A. And, Y.C. Chan, K.N. Tu , Chem. Mater., 15(2003), pp. 4340-4342. |
[5] | J. Shen, Y.C. Chan, S.Y. Liu , Intermetallics, 16(2008), pp. 0-1148. |
[6] | J. Liang, N. Dariavach, D. Shangguan , Metall. Mater. Trans. A, 38(2007), pp. 1530-1538. |
[7] | M.N. Wang, J.Q. Wang, H. Feng, W. Ke , Corros. Sci., 63(2012), pp. 20-28. |
[8] | F. Rosalbino, E. Angelini, G. Zanicchi, R. Marazza , Mater. Chem. Phys., 109(2008), pp. 386-391. |
[9] | U.S. Mohanty, K.L. Lin , Corros. Sci., 50(2008), pp. 2437-2443. |
[10] | H. Wang, Z.M. Gao, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, J. Mater , Sci.-Mater. Electron., 26(2015), pp. 11-22. |
[11] | P. Eckold, M. Rolff, R. Niewa, W. Hügel , Corros. Sci., 98(2015), pp. 399-405. |
[12] | G. Cao, Y.F. Yun, H.J. Xu, G.H. Yuan, J.H. Hu, H.S. Shao , Corros. Sci., 152(2019), pp. 54-59. |
[13] | S. Thomas, N. Birbilis, M.S. Venkatraman, I.S. Cole , Corros. Sci., 69(2013), pp. 11-22. |
[14] | S. Thomas, I.S. Cole, N. Birbilis, J. Electrochem. Soc., 160(2012), pp. 11-22. |
[15] | C. Qiao, L.F. Shen, L. Hao, X. Mu, J.H. Dong, W. Ke, J. Liu, B. Liu, J. Mater. Sci. Technol., 35(2019), pp. 2345-2356. |
[16] | B. Liao, H.Y. Cen, Z.Y. Chen, X.P. Guo , Corros. Sci., 43(2018), pp. 347-361. |
[17] | M.N. Wang, J. Wang, W. Ke , Microelectron. Reliab., 73(2017), pp. 69-75. |
[18] | M.N. Wang, J. Wang, W. Ke, J. Mater. Sci. -Mater. Electron., 25(2014), pp. 1228-1236. |
[19] | X.X. Fu, J.H. Dong, E.H. Han, W. Ke , Sensor, 9(2009), pp. 10400-10410. |
[20] | L. Hao, S.X. Zhang, J.H. Dong, W. Ke , Corros. Sci., 58(2012), pp. 175-180. |
[21] | B. Liu, X. Mu, Y. Yang, L. Hao, X.Y. Ding, J.H. Dong, Z. Zhang, H.X. Hou, W. Ke, J. Mater. Sci. Technol., 35(2019), pp. 1228-1239. |
[22] | A.A. Eldaly, A.E. Hammad, G.S. Alganainy, A.A. Ibrahiem , Mater. Des., 56(2014), pp. 594-603. |
[23] | K. Kim, S.H. Huh, K. Suganuma, J. Alloys Compd., 352(2003), pp. 226-236. |
[24] | F. Rosalbino, E. Angelini, G. Zanicchi, R. Carlini, R. Marazza , Electrochim. Acta, 54(2009), pp. 7231-7235. |
[25] | E. Ghali, Fundamentals of Electrochemical Corrosion, John Wiley & Sons, Inc., New Jersey(2010). |
[26] | C. Thee, L. Hao, J.H. Dong, X. Mu, X. Wei, X.F. Li, W. Ke , Corros. Sci., 78(2014), pp. 130-137. |
[27] | E. Barsoukov, J.R. Macdonald (Eds.), Impedance Spectroscopy: Theory, Experiment , Applications(2nd ed.) , John Wiley & Sons, Hoboken , New Jersey and Canada(2005). |
[28] | A.P. Yadav, A. Nishikata, T. Tsuru , Corros. Sci., 46(2004), pp. 169-181. |
[29] | X.K. Zhong, G.A. Zhang, Y.B. Qiu, Z.Y. Chen, X.P. Guo , Corros. Sci., 74(2013), pp. 71-82. |
[30] | M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber , Thin Solid Films, 490(2005), pp. 36-42. |
[31] | Y. Zhao, X.J. Wang, S.Z. Yang, E. Kuttner, A. Taylor, R. Salemmilani, X. Liu, M. Moskovits, B.H. Wu, A. Dehestani, J.F. Li, M.F. Chisholm, Z.Q. Tian, F.R. Fan, J. Jiang, G.D. Stucky, J. Am. Chem. Soc., 141(2019), pp. 13977-13986. |
[32] | E. Barsoukov, J.R. Macdonald (Eds.), Impedance Spectroscopy: Theory, Experiment , Applications(2nd ed.) , John Wiley & Sons, Hoboken , New Jersey and Canada (2005). |
[33] | J.C. Liu, G. Zhang, J.S. Ma, K. Suganuma, J. Alloys Compd., 644(2015), pp. 113-118. |
[34] | F. Mansfeld, C.H. Tsai , Corrosion, 47(1991), pp. 958-963. |
[35] | C.H. Tsai, F. Mansfeld , Corrosion, 49(1993), pp. 726-737. |
[36] | Y.M. Chen, N.G. Rudawski, E.S. Lambers, M.E. Orazem, J. Electrochem. Soc., 164(2017), pp. C563-C573. |
[37] | B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, J. Electrochem. Soc., 157(2010), pp. C458-C463. |
[38] | G.J. Brug, A. Eeden, M. Sluytersrehbach, J.H. Sluyters, J. Electrochem. Soc., 176(1984), pp. 275-295. |
[39] | B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, J. Electrochem. Soc., 157(2010), pp. C458-C463. |
[40] | L.M. Satizabal, D. Costa, P. Moraes, A.D. Bortolozo, W. Osorio , Mater. Chem. Phys., 223(2019), pp. 410-425. |
[41] | M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, New York(2017). |
[42] | M. Musiani, M.E. Orazem, N. Pebere, B. Tribollet, V. Vivier, J. Electrochem. Soc., 158(2011), pp. C424-C428. |
[43] | I.S. Cole, T.H. Muster, D. Lau, N. Wright, N.S. Azmat, J. Electrochem. Soc., 157(2010), pp. C213-C222. |
[44] | G.S. Frankel, N. Sridhar , Mater. Today, 11(2008), pp. 38-44. |
[45] | J. Soltis , Corros. Sci., 90(2015), pp. 5-22. |
[46] | D. Persson, D. Thierry, O. Karlsson , Corros. Sci., 126(2017), pp. 152-165. |
[47] | I.S. Cole, W.D. Ganther, S.A. Furman, T.H. Muster, A.K. Neufeld , Corros. Sci., 52(2010), pp. 848-858. |
[48] | C. Leygraf, T.E. Graedel, Atmospheric Corrosion, John Wiley & Sons, New York ( 2000). |
[49] | L.J. Shi, X.Y. Yang, Y.W. Song, D. Liu, K.H. Dong, D.Y. Shan, E.H. Han, J. Mater. Sci . Technol., 35(2019), pp. 1886-1893. |
[50] | M.F.M. Nazeri, A.A. Mohamad, J. Alloys Compd., 661(2016), pp. 516-525. |
[51] | M.M. Liu, W.C. Yang, Y.Y. Ma, C.H. Tang, H.Q. Tang, Y.Z. Zhan , Mater. Chem. Phys., 168(2015), pp. 27-34. |
[52] | X.K. Zhong, G.A. Zhang, Y.B. Qiu, Z.Y. Chen, X.P. Guo, C.Y. Fu , Corros. Sci., 66(2013), pp. 14-25. |
[53] | T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, T. Kudo , Corros. Sci., 62(2012), pp. 34-41. |
[54] | R.W. Revie, Uhlig’S Corrosion Handbook, John Wiley & Sons, New York(2011). |
[55] | A.I. Ikeuba, B. Zhang, J.Q. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol., 35(2019), pp. 1444-1454. |
[56] | Q.V. Bui, N.D. Nam, B.I. Noh, A. Kar, J. Kim, S.B. Jung , Mater. Corros., 61(2010), pp. 30-33. |
[57] | J. Trompette , Corros. Sci., 94(2015), pp. 288-293. |
[1] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[2] | Chuang Qiao, Mingna Wang, Long Hao, Xiahe Liu, Xiaolin Jiang, Xizhong An, Duanyang Li. Temperature and NaCl deposition dependent corrosion of SAC305 solder alloy in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2021, 75(0): 252-264. |
[3] | Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH [J]. J. Mater. Sci. Technol., 2021, 64(0): 38-56. |
[4] | Yueming Fan, Wei Liu, Shimin Li, Thee Chowwanonthapunya, Banthukul Wongpat, Yonggang Zhao, Baojun Dong, Tianyi Zhang, Xiaogang Li. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39(0): 190-199. |
[5] | Inime Ime Udoh, Hongwei Shi, Mohammad Soleymanibrojeni, Fuchun Liu, En-Hou Han. Inhibition of galvanic corrosion in Al/Cu coupling model by synergistic combination of 3-Amino-1,2,4-triazole-5-thiol and cerium chloride [J]. J. Mater. Sci. Technol., 2020, 44(0): 102-115. |
[6] | Linjun Shi, Xiuying Yang, Yingwei Song, Dan Liu, Kaihui Dong, Dayong Shan, En-Hou Han. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1886-1893. |
[7] | Alexander I. Ikeuba, Bo Zhang, Jianqiu Wang, En-Hou Han, Wei Ke. Understanding the galvanic corrosion of the Q-phase/Al couple using SVET and SIET [J]. J. Mater. Sci. Technol., 2019, 35(7): 1444-1454. |
[8] | Jinshan Zhang, Jidong Xu, Weili Cheng, Changjiu Chen, Jingjing Kang. Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures [J]. J. Mater. Sci. Technol., 2012, 28(12): 1157-1162. |
[9] | Xiao Tang,Yuzhi Zhang,Meng Liu,Yan Li. Boundary Element Method (BEM) Analysis for Galvanic Corrosion of Hot Dip Galvanized Steel Immersed in Seawater [J]. J Mater Sci Technol, 2009, 25(02): 194-198. |
[10] | Quancheng ZHANG, Jiansheng WU, Wenlong ZHENG, Jianjun WANG, Jiaguang CHEN, Xiaofang YANG, Aibai LI. Characterization of Rust Layer Formed on Low Alloy Steel Exposed in Marine Atmosphere [J]. J Mater Sci Technol, 2002, 18(05): 455-458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||