J. Mater. Sci. Technol. ›› 2021, Vol. 64: 38-56.DOI: 10.1016/j.jmst.2020.03.031
• Research article • Previous Articles Next Articles
Dawei Guoa, Chi Tat Kwoka,b,*()
Received:
2020-02-23
Accepted:
2020-03-20
Published:
2021-02-20
Online:
2021-03-15
Contact:
Chi Tat Kwok
About author:
*Department of Electromechanical Engineering, Uni-versity of Macau, Macau, ChinaE-mail address: fstctk@um.edu.mo (C.T. Kwok).Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH[J]. J. Mater. Sci. Technol., 2021, 64: 38-56.
Fig. 2. Microstructures of (a) cp Cu (etched with the ferric chloride solution, 5 g FeCl3, 30 mL HCl and 100 mL distilled water), (b) cp W (electrochemically etched with 1 mol/L NaOH solution), (c) W80Cu20 and (d) W90Cu10.
Fig. 3. Time dependence of (a, c) galvanic potential and (b, d) galvanic current density for galvanic couples of cp Cu vs cp W in water with (a, b) and without (c, d) 3.38 wt.% NaCl at pH 1, 7 and 13.
Average galvanic potential (VSCE) | Average galvanic current density (μA/cm2) | |
---|---|---|
pH1 | -0.2 | -13 |
pH7 | -0.25 | 1 |
pH13 | -0.5 | 33 |
Table 1 Average galvanic potentials and galvanic current densities for the galvanic couples (cp Cu and cp W) attained at various pH with 3.38 wt.% NaCl after 7 days.
Average galvanic potential (VSCE) | Average galvanic current density (μA/cm2) | |
---|---|---|
pH1 | -0.2 | -13 |
pH7 | -0.25 | 1 |
pH13 | -0.5 | 33 |
OCP/Ecorr-DP (VSCE) | icorr (μA/cm2) | Epit (VSCE) | |
---|---|---|---|
cp Cu | |||
pH 1 | -0.3 | 1.5 | 0.06 |
pH 3 | -0.3 | 0.8 | 0.02 |
pH 7 | -0.2 | 0.9 | 0.02 |
pH 11 | -0.2 | 1.0 | - |
pH 13 | -0.2 | 1.3 | 0.13 |
W80Cu20 direct polarization (DP) | |||
pH 1 | -0.2 | 18.9 | -0.03 |
pH 3 | -0.3 | 2.3 | -0.02 |
pH 7 | -0.4 | 3.8 | -0.02 |
pH 11 | -0.5 | 8.2 | -0.01 |
pH 13 | -0.5 | 17.2 | - |
W90Cu10 direct polarization (DP) | |||
pH 1 | -0.2 | 13.1 | -0.02 |
pH 3 | -0.3 | 2.3 | -0.01 |
pH 7 | -0.4 | 3.1 | -0.01 |
pH 11 | -0.5 | 6.0 | -0.01 |
pH 13 | -0.6 | 22.6 | - |
cp W | |||
pH 1 | -0.2 | 0.8 | - |
pH 3 | -0.3 | 0.9 | - |
pH 7 | -0.4 | 1.7 | - |
pH 11 | -0.5 | 2.6 | active |
pH 13 | -0.6 | 4.6 | active |
Table 2 Corrosion parameters of cp Cu, cp W, W80Cu20 and W90Cu10 in the solutions with 3.38 wt.% NaCl at various pH.
OCP/Ecorr-DP (VSCE) | icorr (μA/cm2) | Epit (VSCE) | |
---|---|---|---|
cp Cu | |||
pH 1 | -0.3 | 1.5 | 0.06 |
pH 3 | -0.3 | 0.8 | 0.02 |
pH 7 | -0.2 | 0.9 | 0.02 |
pH 11 | -0.2 | 1.0 | - |
pH 13 | -0.2 | 1.3 | 0.13 |
W80Cu20 direct polarization (DP) | |||
pH 1 | -0.2 | 18.9 | -0.03 |
pH 3 | -0.3 | 2.3 | -0.02 |
pH 7 | -0.4 | 3.8 | -0.02 |
pH 11 | -0.5 | 8.2 | -0.01 |
pH 13 | -0.5 | 17.2 | - |
W90Cu10 direct polarization (DP) | |||
pH 1 | -0.2 | 13.1 | -0.02 |
pH 3 | -0.3 | 2.3 | -0.01 |
pH 7 | -0.4 | 3.1 | -0.01 |
pH 11 | -0.5 | 6.0 | -0.01 |
pH 13 | -0.6 | 22.6 | - |
cp W | |||
pH 1 | -0.2 | 0.8 | - |
pH 3 | -0.3 | 0.9 | - |
pH 7 | -0.4 | 1.7 | - |
pH 11 | -0.5 | 2.6 | active |
pH 13 | -0.6 | 4.6 | active |
Fig. 5. (a, c) Plots of OCP vs time and (b, d) polarization curves in 3.38 wt.% NaCl solution at (a, b) pH 1 and (c, d) pH 3; SEM micrographs of corroded surface of W80Cu20 in 3.38 wt.% NaCl solutions at (e) pH 1 and (f) pH 3 after polarization test; SEM micrograph of corroded surface of W80Cu20 in water at pH 3 (g) after polarization test.
Fig. 6. SEM micrographs of (a) cp Cu (b) and cp W in 3.38 wt.% NaCl solution at pH 1 immersed for 31 days; SEM micrograph of (c) cp Cu in water at pH 1 immersed for 31 days.
Fig. 7. SEM micrographs of W80Cu20 in water at pH1 immersed for (a) 3, (b) 13 and (c) 31 days with (d) XRD pattern; (e) SEM micrograph of the detached tungsten particles; and (f) corrosion rate vs immersion time of cp Cu, cp W, W80Cu20 and W90Cu10 in 3.38 wt.% NaCl solution at pH 1.
Cu (mol/L) | W (mol/L) | Cl (mol/L) | Na (mol/L) | pH | |
---|---|---|---|---|---|
Cu pH1 NaCl | 2.18 × 10-2 | - | 5.98 × 10-1 | 5.98 × 10-1 | 1.32 |
Cu pH7 NaCl | 1.89 × 10-6 | - | 5.99 × 10-1 | 6.01 × 10-1 | 5.64 |
Cu pH11 NaCl | 9.91 × 10-5 | - | 5.71 × 10-1 | 6.00 × 10-1 | 6.24 |
Cu pH13 NaCl | N.D | - | 6.00 × 10-1 | 6.00 × 10-1 | 12.53 |
W80Cu20 pH1 NaCl | 2.54 × 10-2 | 2.23 × 10-4 | 5.77 × 10-1 | 5.99 × 10-1 | 1.71 |
W80Cu20 pH7 NaCl | 8.73 × 10-5 | 1.55 × 10-4 | 5.67 × 10-1 | 5.97 × 10-1 | 4.98 |
W80Cu20 pH11 NaCl | 3.15 × 10-6 | 5.87 × 10-4 | 5.54 × 10-1 | 6.01 × 10-1 | 6.86 |
W80Cu20 pH13 NaCl | 4.72 × 10-6 | 1.17 × 10-3 | 5.57 × 10-1 | 6.04 × 10-1 | 12.61 |
W90Cu10 pH1 NaCl | 3.43 × 10-2 | 1.99 × 10-5 | 5.83 × 10-1 | 6.00 × 10-1 | 1.96 |
W90Cu10 pH7 NaCl | 8.81 × 10-5 | 4.55 × 10-4 | 5.65 × 10-1 | 5.97 × 10-1 | 4.98 |
W90Cu10 pH11 NaCl | 3.93 × 10-6 | 4.06 × 10-4 | 5.61 × 10-1 | 6.01 × 10-1 | 6.58 |
W90Cu10 pH13 NaCl | N.D | 1.11 × 10-3 | 5.88 × 10-1 | 6.04 × 10-1 | 12.7 |
W pH1 NaCl | - | 1.35 × 10-4 | 6.01 × 10-1 | 6.01 × 10-1 | 1.16 |
W pH7 NaCl | - | 1.71 × 10-4 | 6.00 × 10-1 | 6.00 × 10-1 | 5.45 |
W pH13 NaCl | - | 1.08 × 10-3 | 6.01 × 10-1 | 6.02 × 10-1 | 12.72 |
Table 3 Element concentration of solutions after immersion test measured by AAS.
Cu (mol/L) | W (mol/L) | Cl (mol/L) | Na (mol/L) | pH | |
---|---|---|---|---|---|
Cu pH1 NaCl | 2.18 × 10-2 | - | 5.98 × 10-1 | 5.98 × 10-1 | 1.32 |
Cu pH7 NaCl | 1.89 × 10-6 | - | 5.99 × 10-1 | 6.01 × 10-1 | 5.64 |
Cu pH11 NaCl | 9.91 × 10-5 | - | 5.71 × 10-1 | 6.00 × 10-1 | 6.24 |
Cu pH13 NaCl | N.D | - | 6.00 × 10-1 | 6.00 × 10-1 | 12.53 |
W80Cu20 pH1 NaCl | 2.54 × 10-2 | 2.23 × 10-4 | 5.77 × 10-1 | 5.99 × 10-1 | 1.71 |
W80Cu20 pH7 NaCl | 8.73 × 10-5 | 1.55 × 10-4 | 5.67 × 10-1 | 5.97 × 10-1 | 4.98 |
W80Cu20 pH11 NaCl | 3.15 × 10-6 | 5.87 × 10-4 | 5.54 × 10-1 | 6.01 × 10-1 | 6.86 |
W80Cu20 pH13 NaCl | 4.72 × 10-6 | 1.17 × 10-3 | 5.57 × 10-1 | 6.04 × 10-1 | 12.61 |
W90Cu10 pH1 NaCl | 3.43 × 10-2 | 1.99 × 10-5 | 5.83 × 10-1 | 6.00 × 10-1 | 1.96 |
W90Cu10 pH7 NaCl | 8.81 × 10-5 | 4.55 × 10-4 | 5.65 × 10-1 | 5.97 × 10-1 | 4.98 |
W90Cu10 pH11 NaCl | 3.93 × 10-6 | 4.06 × 10-4 | 5.61 × 10-1 | 6.01 × 10-1 | 6.58 |
W90Cu10 pH13 NaCl | N.D | 1.11 × 10-3 | 5.88 × 10-1 | 6.04 × 10-1 | 12.7 |
W pH1 NaCl | - | 1.35 × 10-4 | 6.01 × 10-1 | 6.01 × 10-1 | 1.16 |
W pH7 NaCl | - | 1.71 × 10-4 | 6.00 × 10-1 | 6.00 × 10-1 | 5.45 |
W pH13 NaCl | - | 1.08 × 10-3 | 6.01 × 10-1 | 6.02 × 10-1 | 12.72 |
Fig. 10. SEM micrographs of corroded surface of W80Cu20 in 3.38 wt.% NaCl solution at (a) pH 7 and (b) pH 11 after polarization test; SEM micrographs of corroded surface of W80Cu20 in water at (c) pH 7 and (d) pH 11 after polarization test; and (e) SEM micrograph of W80Cu20 after OCP measurement in 3.38 wt.% NaCl solution at pH 11.
Fig. 12. SEM micrographs of W80Cu20 in 3.38 wt.% NaCl solution at pH 7 immersed for (a) 1 day, (b) 13 days and (c) 31 days with (e) XRD patterns, as compared with the corroded morphology of W90Cu10 (d) after 31 days; (f) corrosion rate vs immersion time of cp Cu, cp W, W80Cu20 and W90Cu10 in 3.38 wt.% NaCl solution at pH 7.
Fig. 14. SEM micrographs of W80Cu20 in 3.38 wt.% NaCl solution at pH 11 immersed for (a) 1 day and (b) 31 days with (c) XRD pattern; (d) corrosion rate vs immersion time of cp Cu, W80Cu20 and W90Cu10 in 3.38 wt.% NaCl solution at pH 11.
Fig. 16. Photographs of W80Cu20 during polarization test in 3.38 wt.% NaCl solution at pH 13: (a) cathodic region; (b-e) anodic regions with increasing applied potential; (f) photographs of W80Cu20 surface after test (rinsed by DI water).
Fig. 17. SEM micrographs of W80Cu20 corroded surface in (a) 3.38 wt.% NaCl solution at pH 13 (Fig. 16(f)) and (b) water at pH 13 (without NaCl) after polarization test; and the elemental mapping (c-g) of corroded surface of W80Cu20 in 3.38 wt.% NaCl solution at pH 13 after polarization test.
Fig. 18. SEM micrographs of (a) cp Cu and (b) cp W in 3.38 wt.% NaCl solution at pH 13 after 31 days immersion test; SEM micrographs of W80Cu20 in 3.38 wt.% NaCl solution at pH13 immersed for (c) 3 days, (d) 13 days and (e) 31 days with (f) XRD pattern; and (g) corrosion rate vs immersion time of immersion test of cp Cu, cp W, W80Cu20 and W90Cu10 in 3.38 wt.% NaCl solution at pH 13.
Fig. 19. (a) OCP vs pH and (b) corrosion rate (calculated from the icorr extracted from polarization curves directly) vs pH in 3.38 wt.% NaCl solutions at various pH.
[1] | B.H. Chen, H. Zhang , S.Y.M. Chooi, L. Chan, Y.Xu, J.H. Ye, Ind. Eng. Chem. Res., 42(2003), pp. 6096-6103. |
[2] | R. Orozco-Cruz, E. Avila, E. Mejia, T. Perez, A. Contreras, R. Calvan-Martinez , Int. J. Electrochem. Sci., 12(2017), pp. 3133-3152. |
[3] | M. Levy, F.C. Chang, Corrosion Behavior of High Density Tungsten Alloys, Defense Technical Information Archive (1987), https://archive.org/details/DTIC_ADA187108/page/n5. |
[4] | J.J. Batten, I.G. McDonald, B.T. Moore, V.M. Silva, Corrosion of High-density Sintered Tungsten Alloys: Part 1: Immersion Testing, Materials Research Laboratory Report, Defence Science and Technology Organization, Department of Defence , Australia (1988). |
[5] | J.J. Batten, B.T. Moore, Corrosion of High-density Sintered Tungsten Alloys: Part 2: Accelerated Corrosion Testing, Materials Research Laboratory Report, Defence Science and Technology Organization, Department of Defence , Australia (1988). |
[6] | P.K. Wong, C.T. Kwok, H.C. Man, D. Guo , Mater. Chem. Phys., 181(2016), 397-208. |
[7] | S.B. Lyon, T. Richardson(Ed.), Shreir’S Corrosion, Elsevier, Amsterdam(2010), pp. 2151-2156. |
[8] | B. Beverskog, I. Puigdomenech, Pourbaix Diagrams for the System Copper-chlorine at 5-100 °C, Swedish Nuclear Power Inspectorate (1998), . |
[9] | B. Beverskog, I. Puigdomenech, Revised Pourbaix Diagrams for Copper at 5-150 °C, Swedish Nuclear Power Inspectorate (1995), https://inis.iaea.org/search/search.aspx?orig_q=RN:27021617. |
[10] | ASTM G5-94, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, ASTM Standards, ASTM International, PA, USA(2004). |
[11] | ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information From Electrochemical Measurements, ASTM Standards, ASTM International, PA, USA(2015). |
[12] | ASTM G71-81, Conducting and Evaluating Galvanic Tests in Electrolytes, ASTM Standards, ASTM International, PA, USA(1992). |
[13] | C.T. Kwok, P.K. Wong, H.C. Man, F.T. Cheng, J. Nucl. Phys . Mater. Sci. Radiat. Appl., 394(2009), pp. 52-62. |
[14] | L. Stephenson, J.H. Bartlett, , J. Electrochem. Soc., 101(1954), pp. 571-581. |
[15] | H.P. Lee, K. Nobe, A.J. Pearlstein, , J. Electrochem. Soc., 132(1985), pp. 1031-1037. |
[16] | F. King, Corrosion of Copper in Alkaline Chloride Environments, April 10, Swedish Nuclear Fuel and Waste Management Company (2019), https://inis.iaea.org/search/search.aspx?orig_q=RN:33064747 . |
[17] | F.Y. Ma, N. Bensalah (Ed.), Pitting Corrosion, InTech, Rijeka(2012), pp. 139-178. |
[18] | H.P. Hack, T. Richardson (Ed.), Shreir’S Corrosion, Elsevier, Amsterdam(2010), pp. 828-856. |
[19] | S.V. Ganzha, S.N. Maksimova, S.N. Grushevskaya, A.V. Vvedenskii , Prot. Met. Phys. Chem. Surf., 47(2011), pp. 191-202. |
[20] | ASTM G82-98, Standard Guide for Development and Use of a Galvanic Series for Predicting Galvanic Corrosion Performance, ASTM Standards, ASTM International, PA, USA(2014). |
[1] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[2] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[3] | Mingna Wang, Chuang Qiao, Xiaolin Jiang, Long Hao, Xiahe Liu. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51(0): 40-53. |
[4] | Bowei Chen, Hongliu Wu, Ruibang Yi, Wenhui Wang, Haidong Xu, Shaoxiang Zhang, Hongzhou Peng, Junwei Ma, Haomiao Jiang, Rui Zan, Shuang Qiao, Yu Sun, Peng Hou, Pei Han, Jiahua Ni, Xiaonong Zhang. In vitro crevice corrosion of biodegradable magnesium in different solutions [J]. J. Mater. Sci. Technol., 2020, 52(0): 83-88. |
[5] | Inime Ime Udoh, Hongwei Shi, Mohammad Soleymanibrojeni, Fuchun Liu, En-Hou Han. Inhibition of galvanic corrosion in Al/Cu coupling model by synergistic combination of 3-Amino-1,2,4-triazole-5-thiol and cerium chloride [J]. J. Mater. Sci. Technol., 2020, 44(0): 102-115. |
[6] | Linjun Shi, Xiuying Yang, Yingwei Song, Dan Liu, Kaihui Dong, Dayong Shan, En-Hou Han. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1886-1893. |
[7] | Alexander I. Ikeuba, Bo Zhang, Jianqiu Wang, En-Hou Han, Wei Ke. Understanding the galvanic corrosion of the Q-phase/Al couple using SVET and SIET [J]. J. Mater. Sci. Technol., 2019, 35(7): 1444-1454. |
[8] | Fang Xue, Xin Wei, Junhua Dong, Changgang Wang, Wei Ke. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35(4): 596-603. |
[9] | Jiaming Wang, Shengsheng Qian, Yanhui Li, Digby D. Macdonald, Yiming Jiang, Jin Li. Passivity breakdown on 436 ferritic stainless steel in solutions containing chloride [J]. J. Mater. Sci. Technol., 2019, 35(4): 637-643. |
[10] | Haigang Xiao, Wei Ye, Xiaoping Song, Yuantai Ma, Ying Li. Formation process of akaganeite in the simulated wet-dry cycles atmospheric environment [J]. J. Mater. Sci. Technol., 2018, 34(8): 1387-1396. |
[11] | Yunfei Lu, Junhua Dong, Wei Ke. Corrosion Evolution of Low Alloy Steel in Deaerated Bicarbonate Solutions [J]. J. Mater. Sci. Technol., 2015, 31(10): 1047-1058. |
[12] | Jinshan Zhang, Jidong Xu, Weili Cheng, Changjiu Chen, Jingjing Kang. Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures [J]. J. Mater. Sci. Technol., 2012, 28(12): 1157-1162. |
[13] | Xiao Tang,Yuzhi Zhang,Meng Liu,Yan Li. Boundary Element Method (BEM) Analysis for Galvanic Corrosion of Hot Dip Galvanized Steel Immersed in Seawater [J]. J Mater Sci Technol, 2009, 25(02): 194-198. |
[14] | K.Jafarzadeh, T.Shahrabi, S.M.M.Hadavi, M.G.Hosseini. Role of Chloride Ion and Dissolved Oxygen in Electrochemical Corrosion of AA5083-H321 Aluminum-Magnesium Alloy in NaCl Solutions under Flow Conditions [J]. J Mater Sci Technol, 2007, 23(05): 623-628. |
[15] | Dongming GUO, Min ZHANG, Zhuji JIN, Renke KANG. Effects of Chloride Ion on the Texture of Copper and Cu-ZrB2 Coatings Electrodeposited from Copper Nitrate Solution in Different Plating Modes [J]. J Mater Sci Technol, 2006, 22(05): 643-646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||