J. Mater. Sci. Technol. ›› 2021, Vol. 71: 177-185.DOI: 10.1016/j.jmst.2020.07.022
• Research Article • Previous Articles Next Articles
Zhong Lia,c, Jie Wanga,c, Yizhe Donga,c, Dake Xua,c,*(), Xianhui Zhangb,d, Jianhua Wub,d,**(
), Tingyue Gue, Fuhui Wanga,c
Received:
2020-04-26
Revised:
2020-06-25
Accepted:
2020-07-03
Published:
2021-04-30
Online:
2021-04-30
Contact:
Dake Xu,Jianhua Wu
About author:
** Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China. E-mail addresses: wujh@jmu.edu.cn (J. Wu).Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy[J]. J. Mater. Sci. Technol., 2021, 71: 177-185.
Fig. 2. Nyquist plots (a-f) and Bode plots (a’-f’) of TC4 alloy exposed to different culture media: (a, a’) 0 d; (b, b’) 1 d; (c, c’) 4 d; (d, d’) 7 d; (e, e’) 10 d; (f, f’) 14 d.
Fig. 3. Equivalent circuits used to fit the EIS spectra: (a) sterile 2216E media containing different concentrations of Cl-; (b) 2216E culture media containing different concentrations of Cl- inoculated with S. algae.
Time (d) | Rs (Ω cm2) | Cb (μF cm-2) | Rb (Ω cm2) | Qdl (μF cm-2) | ndl | Rct (MΩ cm2) |
---|---|---|---|---|---|---|
Sterile 2216E containing 1.75 % Cl- | ||||||
1 | 13.5 ± 0.2 | 21.3 ± 0.5 | 0.93 ± 0.01 | 4.14 ± 0.79 | ||
4 | 13.3 ± 0.1 | 21.9 ± 0.4 | 0.93 ± 0.01 | 4.74 ± 0.64 | ||
7 | 13.6 ± 0.5 | 22.3 ± 0.2 | 0.93 ± 0.01 | 4.59 ± 0.39 | ||
10 | 13.5 ± 0.2 | 22.4 ± 0.1 | 0.93 ± 0.01 | 4.19 ± 0.14 | ||
14 | 13.2 ± 0.2 | 22.7 ± 0.2 | 0.92 ± 0.01 | 4.26 ± 0.27 | ||
2216E containing 1.75 % Cl- inoculated with S. algae | ||||||
1 | 10.7 ± 0.5 | 8.3 ± 0.5 | 9.9 ± 1.6 | 18.4 ± 1.1 | 0.88 ± 0.03 | 2.37 ± 0.44 |
4 | 11.6 ± 1.8 | 7.9 ± 1.1 | 10.6 ± 1.3 | 16.8 ± 2.2 | 0.88 ± 0.01 | 2.79 ± 0.16 |
7 | 11.7 ± 1.0 | 7.7 ± 0.9 | 11.2 ± 1.7 | 16.0 ± 1.2 | 0.88 ± 0.01 | 2.75 ± 0.12 |
10 | 11.6 ± 1.0 | 6.3 ± 1.8 | 9.6 ± 0.3 | 18.5 ± 2.3 | 0.84 ± 0.06 | 2.84 ± 0.17 |
14 | 12.6 ± 1.9 | 6.2 ± 1.8 | 12.6 ± 1.9 | 16.1 ± 0.2 | 0.84 ± 0.06 | 2.83 ± 0.15 |
Sterile 2216E containing 3.50 % Cl- | ||||||
1 | 5.9 ± 0.3 | 22.9 ± 0.2 | 0.93 ± 0.01 | 3.55 ± 0.65 | ||
4 | 5.8 ± 0.2 | 23.0 ± 0.3 | 0.92 ± 0.01 | 4.39 ± 0.47 | ||
7 | 5.9 ± 0.1 | 22.7 ± 0.4 | 0.92 ± 0.01 | 4.11 ± 0.78 | ||
10 | 5.8 ± 0.1 | 23.4 ± 0.2 | 0.91 ± 0.01 | 3.14 ± 0.47 | ||
14 | 5.8 ± 0.1 | 20.7 ± 0.6 | 0.91 ± 0.01 | 3.86 ± 0.49 | ||
2216E containing 3.50 % Cl- inoculated with S. algae | ||||||
1 | 5.6 ± 0.2 | 8.8 ± 1.5 | 9.1 ± 2.7 | 19.6 ± 0.4 | 0.86 ± 0.02 | 1.28 ± 0.01 |
4 | 5.0 ± 0.5 | 8.6 ± 0.9 | 8.6 ± 1.8 | 20.1 ± 0.6 | 0.85 ± 0.01 | 1.10 ± 0.16 |
7 | 5.2 ± 0.5 | 8.6 ± 0.3 | 10.4 ± 1.6 | 19.3 ± 0.6 | 0.84 ± 0.03 | 1.01 ± 0.04 |
10 | 5.0 ± 0.7 | 8.7 ± 0.1 | 10.4 ± 0.8 | 19.3 ± 0.7 | 0.84 ± 0.01 | 0.90 ± 0.01 |
14 | 5.2 ± 0.2 | 7.9 ± 0.3 | 10.1 ± 0.1 | 19.0 ± 0.7 | 0.85 ± 0.01 | 1.23 ± 0.28 |
Table 1 Fitted EIS parameters. Standard deviations represent three parallel experiments.
Time (d) | Rs (Ω cm2) | Cb (μF cm-2) | Rb (Ω cm2) | Qdl (μF cm-2) | ndl | Rct (MΩ cm2) |
---|---|---|---|---|---|---|
Sterile 2216E containing 1.75 % Cl- | ||||||
1 | 13.5 ± 0.2 | 21.3 ± 0.5 | 0.93 ± 0.01 | 4.14 ± 0.79 | ||
4 | 13.3 ± 0.1 | 21.9 ± 0.4 | 0.93 ± 0.01 | 4.74 ± 0.64 | ||
7 | 13.6 ± 0.5 | 22.3 ± 0.2 | 0.93 ± 0.01 | 4.59 ± 0.39 | ||
10 | 13.5 ± 0.2 | 22.4 ± 0.1 | 0.93 ± 0.01 | 4.19 ± 0.14 | ||
14 | 13.2 ± 0.2 | 22.7 ± 0.2 | 0.92 ± 0.01 | 4.26 ± 0.27 | ||
2216E containing 1.75 % Cl- inoculated with S. algae | ||||||
1 | 10.7 ± 0.5 | 8.3 ± 0.5 | 9.9 ± 1.6 | 18.4 ± 1.1 | 0.88 ± 0.03 | 2.37 ± 0.44 |
4 | 11.6 ± 1.8 | 7.9 ± 1.1 | 10.6 ± 1.3 | 16.8 ± 2.2 | 0.88 ± 0.01 | 2.79 ± 0.16 |
7 | 11.7 ± 1.0 | 7.7 ± 0.9 | 11.2 ± 1.7 | 16.0 ± 1.2 | 0.88 ± 0.01 | 2.75 ± 0.12 |
10 | 11.6 ± 1.0 | 6.3 ± 1.8 | 9.6 ± 0.3 | 18.5 ± 2.3 | 0.84 ± 0.06 | 2.84 ± 0.17 |
14 | 12.6 ± 1.9 | 6.2 ± 1.8 | 12.6 ± 1.9 | 16.1 ± 0.2 | 0.84 ± 0.06 | 2.83 ± 0.15 |
Sterile 2216E containing 3.50 % Cl- | ||||||
1 | 5.9 ± 0.3 | 22.9 ± 0.2 | 0.93 ± 0.01 | 3.55 ± 0.65 | ||
4 | 5.8 ± 0.2 | 23.0 ± 0.3 | 0.92 ± 0.01 | 4.39 ± 0.47 | ||
7 | 5.9 ± 0.1 | 22.7 ± 0.4 | 0.92 ± 0.01 | 4.11 ± 0.78 | ||
10 | 5.8 ± 0.1 | 23.4 ± 0.2 | 0.91 ± 0.01 | 3.14 ± 0.47 | ||
14 | 5.8 ± 0.1 | 20.7 ± 0.6 | 0.91 ± 0.01 | 3.86 ± 0.49 | ||
2216E containing 3.50 % Cl- inoculated with S. algae | ||||||
1 | 5.6 ± 0.2 | 8.8 ± 1.5 | 9.1 ± 2.7 | 19.6 ± 0.4 | 0.86 ± 0.02 | 1.28 ± 0.01 |
4 | 5.0 ± 0.5 | 8.6 ± 0.9 | 8.6 ± 1.8 | 20.1 ± 0.6 | 0.85 ± 0.01 | 1.10 ± 0.16 |
7 | 5.2 ± 0.5 | 8.6 ± 0.3 | 10.4 ± 1.6 | 19.3 ± 0.6 | 0.84 ± 0.03 | 1.01 ± 0.04 |
10 | 5.0 ± 0.7 | 8.7 ± 0.1 | 10.4 ± 0.8 | 19.3 ± 0.7 | 0.84 ± 0.01 | 0.90 ± 0.01 |
14 | 5.2 ± 0.2 | 7.9 ± 0.3 | 10.1 ± 0.1 | 19.0 ± 0.7 | 0.85 ± 0.01 | 1.23 ± 0.28 |
Incubation condition | icorr (nA cm-2) | Ecorr (mV vs. SCE) |
---|---|---|
TC4 in sterile 2216E medium containing 1.75 % Cl- | 8.8 ± 0.3 | -207 ± 18 |
TC4 in 2216E medium containing 1.75 % Cl- inoculated with S. algae | 14.7 ± 1.7 | -478 ± 12 |
TC4 in sterile 2216E medium containing 3.50 % Cl- | 9.4 ± 0.4 | -116 ± 3 |
TC4 in 2216E medium containing 3.50 % Cl- inoculated with S. algae | 26.5 ± 1.2 | -417 ± 8 |
Table 2 Fitted Tafel parameters of TC4 alloy after 14 d immersion in different culture media (Standard deviations were from three parallel experiments).
Incubation condition | icorr (nA cm-2) | Ecorr (mV vs. SCE) |
---|---|---|
TC4 in sterile 2216E medium containing 1.75 % Cl- | 8.8 ± 0.3 | -207 ± 18 |
TC4 in 2216E medium containing 1.75 % Cl- inoculated with S. algae | 14.7 ± 1.7 | -478 ± 12 |
TC4 in sterile 2216E medium containing 3.50 % Cl- | 9.4 ± 0.4 | -116 ± 3 |
TC4 in 2216E medium containing 3.50 % Cl- inoculated with S. algae | 26.5 ± 1.2 | -417 ± 8 |
Fig. 5. SEM images of TC4 alloy surfaces after 4 d immersion in (a) 2216E medium containing 1.75 % Cl- inoculated with S. algae and (b) 2216E medium containing 3.50 % Cl- inoculated with S. algae.
Incubation condition | Average maximum pit depth (μm) | Maximum pit depth (μm) |
---|---|---|
TC4 in 2216E medium containing 1.75 % Cl- inoculated with S. algae | 1.5 ± 0.3 | 1.9 |
TC4 in 2216E medium containing 3.50 % Cl- inoculated with S. algae | 2.8 ± 0.2 | 3.2 |
TC4 in sterile 2216E media containing 1.75 % and 3.50 % Cl- | No pits | No pits |
Table 3 Maximum pit depths on TC4 sample surfaces after 14 d immersion (Standard deviations were from at least 10 corrosion pits).
Incubation condition | Average maximum pit depth (μm) | Maximum pit depth (μm) |
---|---|---|
TC4 in 2216E medium containing 1.75 % Cl- inoculated with S. algae | 1.5 ± 0.3 | 1.9 |
TC4 in 2216E medium containing 3.50 % Cl- inoculated with S. algae | 2.8 ± 0.2 | 3.2 |
TC4 in sterile 2216E media containing 1.75 % and 3.50 % Cl- | No pits | No pits |
Fig. 8. CLSM images of deepest pits on TC4 sample surfaces after incubation for 14 d in the presence of S. algae: (a) 2216E medium containing 1.75 % Cl-; (b) 2216E medium containing 3.50 % Cl-.
Fig. 9. XPS results of Ti oxide compositions on TC4 alloy surfaces after 14 d immersion in different culture media: (a) sterile 2216E medium containing 1.75 % Cl-; (b) 2216E medium containing 1.75 % Cl- inoculated with S. algae; (c) sterile 2216E medium containing 3.50 % Cl-; (d) 2216E medium containing 3.50 % Cl- inoculated with S. algae.
[1] | A.J. Sedriks, Mater. Perform. Charact. 33 (1994) 56-63. |
[2] |
P.N. Lewis, C.L. Hewitt, M. Riddle, A. McMinn, Mar. Pollut. Bull. 46 (2003) 213-223.
DOI URL |
[3] |
C. Guedes Soares, Y. Garbatov, A. Zayed, Corros. Eng. Sci. Technol. 46 (2013) 524-541.
DOI URL |
[4] |
A. Afshar, H.T. Liao, F.P. Chiang, C.S. Korach, Compos. Struct. 144 (2016) 80-85.
DOI URL |
[5] |
C. Liu, C. Ma, Q. Xie, G. Zhang, J. Mater. Chem. A 5 (2017) 15855-15861.
DOI URL |
[6] |
B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma, NPJ Mater. Degrad. 1 (2017) 1-10.
DOI URL |
[7] |
S.J. Hashemi, N. Bak, F. Khan, K. Hawboldt, L. Lefsrud, J. Wolodko, Corrosion 74 (2017) 468-486.
DOI URL |
[8] |
B. Little, P. Wagner, F. Mansfeld, Int. Mater. Rev. 36 (1991) 253-272.
DOI URL |
[9] |
T.L. Skovhus, R.B. Eckert, E. Rodrigues, J. Biotechnol. 256 (2017) 31-45.
DOI URL |
[10] | R. Javaherdashti, Cham, 2017, pp. 29-79. |
[11] |
R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeter. Biodegr. 137 (2019) 42-58.
DOI |
[12] |
E. Zhou, H. Li, C. Yang, J. Wang, D. Xu, D. Zhang, T. Gu, Int. Biodeter. Biodegr. 127 (2018) 1-9.
DOI URL |
[13] |
I.V. Gorynin, Mater. Sci. Eng. A 263 (1999) 112-116.
DOI URL |
[14] | J. Myers, H. Bomberger, F. Froes, JOM 36 (1984) 50-60. |
[15] |
I. Gurrappa, Mater. Charact. 51 (2003) 131-139.
DOI URL |
[16] | J.A. Mountford Jr., Corrosion 2002, NACE International, Denver, Colorado, U.S, 2002, April 7-11. |
[17] |
C. Dang, J. Li, Y. Wang, J. Chen, Appl. Surf. Sci. 386 (2016) 224-233.
DOI URL |
[18] |
Z.Y. Huang, Q.Y. Wang, D. Wagner, C. Bathias, Mater. Sci. Eng. A 600 (2014) 153-158.
DOI URL |
[19] |
H. Wake, H. Takahashi, T. Takimoto, H. Takayanagi, K. Ozawa, H. Kadoi, M. Okochi, T. Matsunaga, Biotechnol. Bioeng. 95 (2006) 468-473.
DOI URL |
[20] |
S. Yan, G.L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M.S. Dargusch, L. Zhou, J. Mater. Sci. Technol. 34 (2018) 421-435.
DOI URL |
[21] |
M. Saleem Khan, Z. Li, K. Yang, D. Xu, C. Yang, D. Liu, Y. Lekbach, E. Zhou, P. Kalnaowakul, J. Mater. Sci. Technol. 35 (2019) 216-222.
DOI |
[22] |
R.T. Foley, Corrosion 26 (1970) 58-70.
DOI URL |
[23] |
S. Liu, H. Sun, L. Sun, H. Fan, Corros. Sci. 65 (2012) 520-527.
DOI URL |
[24] |
Z.Q. Jin, X. Zhao, T.J. Zhao, J.Q. Li, Constr. Build. Mater. 177 (2018) 170-183.
DOI URL |
[25] |
G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, J. Mater. Sci. Technol. 30 (2014) 253-258.
DOI URL |
[26] |
B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang, D. Chen, Y.C. Zhang, K. Du, E.E. Oguzie, X.L. Ma, Nat. Commun. 9 (2018) 2559.
DOI PMID |
[27] |
Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, X. Li, Appl. Surf. Sci. 349 (2015) 746-756.
DOI URL |
[28] |
K. Fushimi, H. Kondo, H. Konno, Electrochimi. Acta 55 (2009) 258-264.
DOI URL |
[29] |
D. Starosvetsky, O. Khaselev, M. Auinat, Y. Ein-Eli, Electrochim. Acta 51 (2006) 5660-5668.
DOI URL |
[30] |
K. Cho, H. Pickering, J. Electrochem. Soc. 138 (1991) L56-L58.
DOI URL |
[31] |
X. Tang, S. Wang, L. Qian, Y. Li, Z. Lin, D. Xu, Chem. Eng. Res. Des. 100 (2015) 530-541.
DOI URL |
[32] |
A.M. Fekry, Electrochim. Acta 54 (2009) 3480-3489.
DOI URL |
[33] |
D. Xu, E. Zhou, Y. Zhao, H. Li, Z. Liu, D. Zhang, C. Yang, H. Lin, X. Li, K. Yang, J. Mater. Sci. Technol. 34 (2018) 1325-1336.
DOI URL |
[34] |
Y. Lou, L. Lin, D. Xu, S. Zhao, C. Yang, J. Liu, Y. Zhao, T. Gu, K. Yang, Int. Biodeter. Biodegr. 110 (2016) 199-205.
DOI URL |
[35] |
D. Tromans, Hydrometallurgy 50 (1998) 279-296.
DOI URL |
[36] |
F. Contu, B. Elsener, H. Böhni, J. Biomed. Mater. Res. 62 (2002) 412-421.
DOI URL |
[1] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[2] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[3] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[4] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[5] | Kecheng Quan, Zexin Zhang, Yijin Ren, Henk J. Busscher, Henny C. van der Mei, Brandon W. Peterson. Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms [J]. J. Mater. Sci. Technol., 2021, 69(0): 69-78. |
[6] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[7] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
[8] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[9] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[10] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[11] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[12] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[13] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[14] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[15] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||