J. Mater. Sci. Technol. ›› 2021, Vol. 74: 143-154.DOI: 10.1016/j.jmst.2020.08.066
• Research Article • Previous Articles Next Articles
Baoxian Sua, Binbin Wanga, Liangshun Luoa,*(), Liang Wanga, Yanqing Sua,*(
), Fuxin Wangb, Yanjin Xub, Baoshuai Hanb, Haiguang Huangc,d, Jingjie Guoa, Hengzhi Fua
Received:
2020-07-01
Revised:
2020-07-30
Accepted:
2020-08-02
Published:
2021-05-30
Online:
2020-10-08
Contact:
Liangshun Luo,Yanqing Su
About author:
suyq@hit.edu.cn (Y. Su).Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature[J]. J. Mater. Sci. Technol., 2021, 74: 143-154.
Ti | Al | Nb | Zr | Mo | C | H | O | N |
---|---|---|---|---|---|---|---|---|
Bal. | 6.06 | 2.98 | 1.95 | 1.05 | 0.009 | 0.0032 | 0.07 | 0.008 |
Table 1 Chemical composition of Ti-6Al-3Nb-2Zr-1Mo alloy (wt.%).
Ti | Al | Nb | Zr | Mo | C | H | O | N |
---|---|---|---|---|---|---|---|---|
Bal. | 6.06 | 2.98 | 1.95 | 1.05 | 0.009 | 0.0032 | 0.07 | 0.008 |
Fig. 1. (a) XRD pattern of Ti80 alloy; the partial XRD pattern is highlighted in (b). (c) OM and (d) SEM images Ti80 alloy; (e) TEM bright-field and (f) HAADF images and (g-l) STEM elemental maps of Ti80 alloy.
Fig. 3. PDP curves of Ti80 alloy: (a) in 1.37, 3, 5 and 7 M HCl at 25 °C, and (b) at 25, 37, 45 and 55 °C in 5 M HCl. Schematic diagrams of cathodic Tafel fitting (c) in 3, 5 and 7 M HCl at 25 °C, and (d) at 25, 37, 45 and 55 °C in 5 M HCl.
Fig. 5. Anodic curves after current correction for cathodic hydrogen evolution reaction: (a) in 1.37, 3, 5 and 7 M HCl at 25 °C, and (b) at 25, 37, 45 and 55 °C in 5 M HCl. The inserts are variations of the maximum anodic current (im) with HCl concentration or temperature, respectively.
Fig. 6. (a) Variations of the logarithm of icorr or im with the logarithm of HCl concentration at 25 °C, and (b) Arrhenius plots of icorr or im vs. 1/T in 5 M HCl solution in the temperature range of 25-55 °C.
Fig. 7. (a) Nyquist plots and (b) corresponding Bode plots of Ti80 alloy in 1.37, 3, 5 and 7 M HCl at 25 °C. (c) Nyquist plots and (d) corresponding Bode plots of Ti80 alloy at 25, 37, 45 and 55 °C in 5 M HCl. The inserts in (a) and (c) are the magnifications of the rectangle regions to show the details of the curves. The solid curves are the simulated results obtained by Zsimpwin 3.10.
Fig. 8. (a) The equivalent circuits used to fit the measured impedance data. Variations of Rp as functions of (b) HCl concentration or (c) temperature.
CHCl (M) | Rs (Ω cm2) | CPEf (10-5 S sn cm-2) | nf | Rf (Ω cm2) | CPEdl (mS sn cm-2) | ndl | Rct (Ω cm2) | χ2 (10-3) |
---|---|---|---|---|---|---|---|---|
1.37 | 4.606 | 4.124 | 0.9452 | 1,680,000 | - | - | - | 1.273 |
3 | 3.971 | 31.85 | 0.9368 | 465.2 | 52.56 | 0.8958 | 369.3 | 1.487 |
5 | 3.086 | 33.36 | 0.9293 | 303.9 | 84.85 | 0.9997 | 156.5 | 2.922 |
7 | 7.325 | 28.38 | 0.9212 | 104.5 | 122.90 | 0.9506 | 47.78 | 0.468 |
Table 2 Equivalent circuit parameters for Ti80 alloy in different concentration (CHCl) of 1.37, 3, 5 and 7 M HCl at 25 °C.
CHCl (M) | Rs (Ω cm2) | CPEf (10-5 S sn cm-2) | nf | Rf (Ω cm2) | CPEdl (mS sn cm-2) | ndl | Rct (Ω cm2) | χ2 (10-3) |
---|---|---|---|---|---|---|---|---|
1.37 | 4.606 | 4.124 | 0.9452 | 1,680,000 | - | - | - | 1.273 |
3 | 3.971 | 31.85 | 0.9368 | 465.2 | 52.56 | 0.8958 | 369.3 | 1.487 |
5 | 3.086 | 33.36 | 0.9293 | 303.9 | 84.85 | 0.9997 | 156.5 | 2.922 |
7 | 7.325 | 28.38 | 0.9212 | 104.5 | 122.90 | 0.9506 | 47.78 | 0.468 |
Temperature (°C) | Rs (Ω cm2) | CPEf (10-5 S sn cm-2) | nf | Rf (Ω cm2) | CPEdl (mS sn cm-2) | ndl | Rct (Ω cm2) | χ2 (10-3) |
---|---|---|---|---|---|---|---|---|
25 | 3.086 | 33.36 | 0.9293 | 303.9 | 84.85 | 0.997 | 156.5 | 2.922 |
37 | 1.582 | 38.69 | 0.9254 | 56.24 | 40.64 | 1 | 45.99 | 4.486 |
45 | 1.791 | 46.11 | 0.9288 | 32.11 | 36.70 | 0.9966 | 27.82 | 3.733 |
55 | 9.598 | 63.01 | 0.8922 | 20.89 | 33.65 | 0.9137 | 19.76 | 1.183 |
Table 3 Equivalent circuit parameters for Ti80 alloy at 25, 37, 45 and 55 °C in 5 M HCl.
Temperature (°C) | Rs (Ω cm2) | CPEf (10-5 S sn cm-2) | nf | Rf (Ω cm2) | CPEdl (mS sn cm-2) | ndl | Rct (Ω cm2) | χ2 (10-3) |
---|---|---|---|---|---|---|---|---|
25 | 3.086 | 33.36 | 0.9293 | 303.9 | 84.85 | 0.997 | 156.5 | 2.922 |
37 | 1.582 | 38.69 | 0.9254 | 56.24 | 40.64 | 1 | 45.99 | 4.486 |
45 | 1.791 | 46.11 | 0.9288 | 32.11 | 36.70 | 0.9966 | 27.82 | 3.733 |
55 | 9.598 | 63.01 | 0.8922 | 20.89 | 33.65 | 0.9137 | 19.76 | 1.183 |
Fig. 9. Variations in weight loss of Ti80 alloy with immersion time: (a) in 1.37, 3, 5 and 7 M HCl solutions at 25 °C, (b) at 25, 37, 45 and 55 °C in 5 M HCl solution. Corrosion rate of Ti80 alloy varies with (c) HCl concentration or (d) temperature.
Fig. 10. SEM images of corroded surface morphologies of Ti80 alloy after 10 d of immersion: in (a) 1.37, (b) 3, (c) 5 and (d) 7 M HCl at 25 °C; at (e) 25, (f) 37, (g) 45 and (h) 55 °C in 5 M HCl.
Fig. 11. AFM images of Ti80 alloy after 1 h of immersion in (a) 1.37, (b) 3, (c) 5 M and (d) 7 M HCl at 25 °C; at (e) 25, (f) 37, (g) 45 and (h) 55 °C in 5 M HCl.
[1] |
N. Dai, L.C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, C. Yang, Corros. Sci. 111 (2016) 703-710.
DOI URL |
[2] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
[3] |
A.J. Sedriks, J.A.S. Green, D.L. Novak, Corrosion 28 (1972) 137-142.
DOI URL |
[4] |
G. Bolat, J. Izquierdo, J.J. Santana, D. Mareci, R.M. Souto, Electrochim. Acta 88 (2013) 447-456.
DOI URL |
[5] | D. Prando, A. Brenna, F.M. Bolzoni, M.V. Diamanti, M. Pedeferri, M. Ormellese, J. Appl. Biomater. Funct. Mater. 15 (2017) e19-e24. |
[6] |
N.T. Thomas, K. Nobe, J. Electrochem. Soc. 119 (1972) 1450-1456.
DOI URL |
[7] |
S. Yan, G.L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M.S. Dargusch, L. Zhou, J. Mater. Sci. Technol. 34 (2018) 421-435.
DOI URL |
[8] |
Q. Wang, J.Q. Ren, Y.K. Wu, P. Jiang, J.Q. Li, Z.J. Sun, X.T. Liu, J. Alloys Compd. 789 (2019) 249-255.
DOI URL |
[9] |
K. Guo, K. Meng, D. Miao, Q. Wang, C. Zhang, T. Wang, Mater. Sci. Eng. A 766 (2019), 138346.
DOI URL |
[10] |
B. Su, L. Luo, B. Wang, Y. Su, L. Wang, R.O. Ritchie, E. Guo, T. Li, H. Yang, H. Huang, J. Guo, H. Fu, J. Mater. Sci. Technol. 62 (2021) 234-248.
DOI URL |
[11] |
M. Aziz-Kerrzo, K.G. Conroy, A.M. Fenelon, S.T. Farrell, C.B. Breslin, Biomaterials 22 (2001) 1531-1539.
PMID |
[12] |
C. Xia, Z. Zhang, Z. Feng, B. Pan, X. Zhang, M. Ma, R. Liu, Corros. Sci. 112 (2016) 687-695.
DOI URL |
[13] |
S.Y. Yu, J.R. Scully, C.M. Vitus, J. Electrochem. Soc. 148 (2001) B68-B78.
DOI URL |
[14] |
S.Y. Yu, J.R. Scully, Corrosion 53 (1997) 965-976.
DOI URL |
[15] |
M. Stern, H. Wissenberg, J. Electrochem. Soc. 106 (1959) 759-764.
DOI URL |
[16] |
D.G. Kolman, J. Electrochem. Soc. 141 (1994) 2633-2641.
DOI URL |
[17] |
D. Starosvetsky, O. Khaselev, J. Yahalom, Corrosion 54 (1998) 524-530.
DOI URL |
[18] |
S.Y. Yu, C.W. Brodrick, M.P. Ryan, J.R. Scully, J. Electrochem. Soc. 146 (1999) 4429-4438.
DOI URL |
[19] |
A.S. Mogoda, Y.H. Ahmad, W.A. Badawy, J. Appl. Electrochem. 34 (2004) 873-878.
DOI URL |
[20] |
J. Liu, A. Alfantazi, E. Asselin, J. Electrochem. Soc. 162 (2015) C189-C196.
DOI URL |
[21] |
V.A. Alves, R.Q. Reis, I.C.B. Santos, D.G. Souza, Tde F. Gonçalves, M.A. Pereira-da-Silva, A. Rossi, L.A. da Silva, Corros. Sci. 51 (2009) 2473-2482.
DOI URL |
[22] |
W.B. Utomo, S.W. Donne, Electrochim. Acta 51 (2006) 3338-3345.
DOI URL |
[23] |
D.L. Dull, K.E.N. Nobe, Corrosion 30 (1974) 291-295.
DOI URL |
[24] |
G.T. Burstein, C. Liu, R.M. Souto, Biomaterials 26 (2005) 245-256.
PMID |
[25] |
Z. Cui, L. Wang, M. Zhong, F. Ge, H. Gao, C. Man, C. Liu, X. Wang, J. Electrochem. Soc. 165 (2018) C542-C561.
DOI URL |
[26] |
A.M. Fekry, Electrochim. Acta 54 (2009) 3480-3489.
DOI URL |
[27] |
S.X. Liang, L.X. Yin, H.W. Che, R. Jing, Y.K. Zhou, M.Z. Ma, R.P. Liu, Mater. Des. 52 (2013) 246-250.
DOI URL |
[28] |
M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, M.H. Fathi, M. Shamanian, Corrosion 66 (2010), 065004.
DOI URL |
[29] |
D.R. Correa, F.B. Vicente, T.A. Donato, V.E. Arana-Chavez, M.A. Buzalaf, C.R. Grandini, Mater. Sci. Eng. C 34 (2014) 354-359.
DOI URL |
[30] |
Y.L. Hao, S.J. Li, S.Y. Sun, R. Yang, Mater. Sci. Eng. A 441 (2006) 112-118.
DOI URL |
[31] |
X.H. Min, S. Emura, L. Zhang, K. Tsuzaki, Mater. Sci. Eng. A 497 (2008) 74-78.
DOI URL |
[32] | M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, NACE International, 1974. |
[33] |
D.J. Blackwood, L.M. Peter, D.E. Williams, Electrochim. Acta 33 (1988) 1143-1149.
DOI URL |
[34] |
Y. Yang, C. Xia, Z. Feng, X. Jiang, B. Pan, X. Zhang, M. Ma, R. Liu, Corros. Sci. 101 (2015) 56-65.
DOI URL |
[35] |
M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, Corros. Sci. 52 (2010) 3062-3069.
DOI URL |
[36] |
C.K. Dyer, J. Electrochem. Soc. 125 (1978) 23-29.
DOI URL |
[37] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[38] |
Z.B. Wang, H.X. Hu, Y.G. Zheng, Electrochim. Acta 170 (2015) 300-310.
DOI URL |
[39] |
Y. Bai, X. Gai, S. Li, L.C. Zhang, Y. Liu, Y. Hao, X. Zhang, R. Yang, Y. Gao, Corros. Sci. 123 (2017) 289-296.
DOI URL |
[40] |
Z.B. Wang, H.X. Hu, Y.G. Zheng, Corros. Sci. 130 (2018) 203-217.
DOI URL |
[41] |
H. Luo, S.S. Sohn, W. Lu, L. Li, X. Li, C.K. Soundararajan, W. Krieger, Z. Li, D. Raabe, Nat. Commun. 11 (2020) 3081.
DOI URL |
[42] |
Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Corros. Sci. 103 (2016) 50-65.
DOI URL |
[43] |
W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14 (2015) 1229-1235.
DOI URL |
[44] |
Y.J. Feng, L. Wei, X.B. Chen, M.C. Li, Y.F. Cheng, Q. Li, Corros. Sci. 159 (2019), 108133.
DOI URL |
[45] |
Z.B. Wang, H.X. Hu, C.B. Liu, Y.G. Zheng, Electrochim. Acta 135 (2014) 526-535.
DOI URL |
[46] |
M. Pour-Ghaz, O.B. Isgor, P. Ghods, Corros. Sci. 51 (2009) 415-425.
DOI URL |
[47] |
N.T. Thomas, K. Nobe, J. Electrochem. Soc. 117 (1970) 622-626.
DOI URL |
[48] |
C.S. Brossia, G.A. Cragnolino, Corros. Sci. 46 (2004) 1693-1711.
DOI URL |
[49] |
S.Y. Yu, J.R. Scully, C.M. Vitus, J. Electrochem. Soc. 148 (2001) B68-B78.
DOI URL |
[50] |
E. Gileadi, J. Electrochem. Soc. 134 (1987) 117-120.
DOI URL |
[51] |
M.A. Ameer, A.M. Fekry, F.E.T. Heakal, Electrochim. Acta 50 (2004) 43-49.
DOI URL |
[52] |
H.L. Lien, W.X. Zhang, Appl. Catal. B 77 (2007) 110-116.
DOI URL |
[53] |
Rd.P.B. Hernández, I.V. Aoki, B. Tribollet, H.G. de Melo, Electrochim. Acta 56 (2011) 2801-2814.
DOI URL |
[54] |
W. Xu, X. Lu, J. Tian, C. Huang, M. Chen, Y. Yan, L. Wang, X. Qu, C. Wen, J. Mater. Sci. Technol. 41 (2020) 191-198.
DOI URL |
[55] |
J. Li, Y. Bai, Z. Fan, S. Li, Y. Hao, R. Yang, Y. Gao, J. Mater. Sci. Technol. 34 (2018) 1660-1670.
DOI URL |
[56] |
A.K. Shukla, R. Balasubramaniam, Corros. Sci. 48 (2006) 1696-1720.
DOI URL |
[57] |
X. Wang, Z. Chen, J. Ren, H. Kang, E. Guo, J. Li, T. Wang, Corros. Sci. 164 (2020), 108318.
DOI URL |
[58] |
D. Huang, J. Hu, G.L. Song, X. Guo, Electrochim. Acta 56 (2011) 10166-10178.
DOI URL |
[59] |
Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, J. Alloys Compd. 805 (2019) 585-596.
DOI URL |
[60] |
C.L. Alexander, B. Tribollet, M.E. Orazem, Electrochim. Acta 173 (2015) 416-424.
DOI URL |
[61] |
W. Liu, Q. Li, M.C. Li, Corros. Sci. 121 (2017) 72-83.
DOI URL |
[62] | H. Zhang, D. Gu, L. Xi, H. Zhang, M. Xia, C. Ma, J. Mater. Sci. Technol. 35 (2019) 1128-1136. |
[63] |
L. Liu, L. Wu, X. Chen, D. Sun, Y. Chen, G. Zhang, X. Ding, F. Pan, J. Mater. Sci. Technol. 37 (2020) 104-113.
DOI URL |
[64] |
Y. Chen, J. Zhang, N. Dai, P. Qin, H. Attar, L.C. Zhang, Electrochim. Acta 232 (2017) 89-97.
DOI URL |
[65] |
W. Liu, M.C. Li, Q. Luo, H.Q. Fan, J.Y. Zhang, H.S. Lu, K.C. Chou, X.L. Wang, Q. Li, Corros. Sci. 104 (2016) 217-226.
DOI URL |
[66] |
Z. Qiu, Z. Li, H. Fu, H. Zhang, Z. Zhu, A. Wang, H. Li, L. Zhang, H. Zhang, J. Mater. Sci. Technol. 46 (2020) 33-43.
DOI URL |
[67] |
C. Peng, Y. Liu, H. Liu, S. Zhang, C. Bai, Y. Wan, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2121-2131.
DOI URL |
[68] |
F. Yang, H. Kang, E. Guo, R. Li, Z. Chen, Y. Zeng, T. Wang, Corros. Sci. 139 (2018) 333-345.
DOI URL |
[69] |
M.A. Khan, R.L. Williams, D.F. Williams, Biomaterials 20 (1999) 631-637.
PMID |
[70] |
W.Y. Guo, J. Sun, J.S. Wu, Mater. Chem. Phys. 113 (2009) 816-820.
DOI URL |
[1] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[2] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[3] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[4] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[5] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[6] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[7] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[8] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[9] | Hao Wu, Yunlei Xu, Zhihao Wang, Zhenhua Liu, Qinggang Li, Jinkai Li, Junyan Wu. The influence of solute atom ordering on the deformation behavior of hexagonal close packed Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 235-242. |
[10] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[11] | Heng Chen, Zebang He, Lin Lu. Correlation of surface features with corrosion behaviors of interstitial free steel processed by temper rolling [J]. J. Mater. Sci. Technol., 2020, 36(0): 37-44. |
[12] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[13] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[14] | Chunduo Dai, Tianliang Zhao, Cuiwei Du, Zhiyong Liu, Dawei Zhang. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 64-73. |
[15] | Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39(0): 56-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||