J. Mater. Sci. Technol. ›› 2021, Vol. 62: 128-138.DOI: 10.1016/j.jmst.2020.05.067
• Research Article • Previous Articles Next Articles
Huabao Yanga, Liang Wua,*(), Bin Jianga,b,*(), Wenjun Liuc, Jiangfeng Songa, Guangsheng Huanga, Dingfei Zhanga, Fusheng Pana,b
Received:
2020-04-21
Revised:
2020-05-14
Accepted:
2020-05-17
Published:
2021-01-30
Online:
2021-02-01
Contact:
Liang Wu,Bin Jiang
About author:
jiangbinrong@cqu.edu.cn (B. Jiang).Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries[J]. J. Mater. Sci. Technol., 2021, 62: 128-138.
Element | LAZ131 | LAZ531 |
---|---|---|
Li | 0.99 | 5.10 |
Al | 2.64 | 2.70 |
Zn | 0.70 | 0.79 |
Mn | 0.06 | 0.05 |
Fe | 0.0028 | 0.0028 |
Cu | 0.0006 | 0.0001 |
Si | 0.0053 | 0.0051 |
Ni | <0.0001 | <0.0001 |
Mg | Bal. | Bal. |
Table 1 Chemical compositions of LAZ131 and LAZ531 alloys (wt%).
Element | LAZ131 | LAZ531 |
---|---|---|
Li | 0.99 | 5.10 |
Al | 2.64 | 2.70 |
Zn | 0.70 | 0.79 |
Mn | 0.06 | 0.05 |
Fe | 0.0028 | 0.0028 |
Cu | 0.0006 | 0.0001 |
Si | 0.0053 | 0.0051 |
Ni | <0.0001 | <0.0001 |
Mg | Bal. | Bal. |
Fig. 2. Optical micrographs (a, c), corresponding grain size distributions (b, d), and (0002) pole figures (e, f) of LAZ131 (a, b, e) and LAZ531 (c, d, f) alloys.
Fig. 3. Hydrogen evolution curves (a), corrosion rates measured from hydrogen evolution and weight loss (b), potentiodynamic polarization curves (c), and Nyquist plots (d) for LAZ131 and LAZ531 alloys. The equivalent circuit used for fitting the EIS results (e).
Alloys | Ecorr (VSCE) | ba (mV dec-1) | icorr (mA cm-2) | Pi (mm y-1) |
---|---|---|---|---|
LAZ131 | -1.433 | 16.33 | 0.073 ± 0.002 | 1.67 ± 0.04 |
LAZ531 | -1.480 | 15.52 | 0.132 ± 0.005 | 3.02 ± 0.11 |
Table 2 Parameters evaluated from the potentiodynamic polarization curves of LAZ131 and LAZ531 alloys.
Alloys | Ecorr (VSCE) | ba (mV dec-1) | icorr (mA cm-2) | Pi (mm y-1) |
---|---|---|---|---|
LAZ131 | -1.433 | 16.33 | 0.073 ± 0.002 | 1.67 ± 0.04 |
LAZ531 | -1.480 | 15.52 | 0.132 ± 0.005 | 3.02 ± 0.11 |
Parameter | LAZ131 | LAZ531 |
---|---|---|
Rs (Ω cm2) | 8.4 | 3.5 |
Rct (Ω cm2) | 2095 | 650 |
Y1 (sn Ω-1 cm-2) | 1.25 × 10-5 | 1.25 × 10-5 |
n1 | 0.92 | 0.93 |
Rf (Ω cm2) | 1400 | 400 |
Y2 (sn Ω-1 cm-2) | 1.19 × 10-3 | 3.21 × 10-3 |
n2 | 0.83 | 0.89 |
Table 3 Parameters extracted from the EIS results.
Parameter | LAZ131 | LAZ531 |
---|---|---|
Rs (Ω cm2) | 8.4 | 3.5 |
Rct (Ω cm2) | 2095 | 650 |
Y1 (sn Ω-1 cm-2) | 1.25 × 10-5 | 1.25 × 10-5 |
n1 | 0.92 | 0.93 |
Rf (Ω cm2) | 1400 | 400 |
Y2 (sn Ω-1 cm-2) | 1.19 × 10-3 | 3.21 × 10-3 |
n2 | 0.83 | 0.89 |
Fig. 4. Galvanostatic discharge curves of Mg-air batteries based on LAZ131 and LAZ531 alloys at the current densities of 2.5 mA cm-2 for 10 h (a) and 10 mA cm-2 for 5 h (b).
Alloys | Average discharge voltage (V) | Anodic efficiency (%) | ||
---|---|---|---|---|
At 2.5 mA cm-2 | At 10 mA cm-2 | At 2.5 mA cm-2 | At 10 mA cm-2 | |
LAZ131 | 1.4589 ± 0.008 | 1.3037 ± 0.013 | 32.8 ± 0.7 | 44.3 ± 1.1 |
LAZ531 | 1.4801 ± 0.009 | 1.3742 ± 0.015 | 38.3 ± 0.8 | 48.7 ± 1.3 |
Table 4 Average discharge voltages and anodic efficiencies of Mg-air batteries based on the two alloys during galvanostatic discharged at 2.5 mA cm-2 and 10 mA cm-2.
Alloys | Average discharge voltage (V) | Anodic efficiency (%) | ||
---|---|---|---|---|
At 2.5 mA cm-2 | At 10 mA cm-2 | At 2.5 mA cm-2 | At 10 mA cm-2 | |
LAZ131 | 1.4589 ± 0.008 | 1.3037 ± 0.013 | 32.8 ± 0.7 | 44.3 ± 1.1 |
LAZ531 | 1.4801 ± 0.009 | 1.3742 ± 0.015 | 38.3 ± 0.8 | 48.7 ± 1.3 |
[1] |
J.J. He, Y. Mao, Y.P. Gao, K. Xiong, B. Jiang, F.S. Pan, J. Alloys. Compd. 786 (2019) 394-408.
DOI URL |
[2] |
J.J. He, Y. Mao, Y.J. Fu, B. Jiang, K. Xiong, S.M. Zhang, F.S. Pan, J. Alloys. Compd. 797 (2019) 443-455.
DOI URL |
[3] |
J.J. He, Y. Mao, S.L. Lu, K. Xiong, S.M. Zhang, B. Jiang, F.S. Pan, Mater. Sci. Eng. A 760 (2019) 174-185.
DOI URL |
[4] | Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D. F. Zhang, F.S. Pan, J. Magn. Alloys 7 (2019) 545-554. |
[5] |
Y.F. Chai, C. He, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, F.S. Pan, J. Mater. Sci. Technol. 37 (2020) 26-37.
DOI URL |
[6] |
Q.H. Wang, Y. Song, B. Jiang, J. Fu, A.T. Tang, H.R. Sheng, J.F. Song, D.F. Zhang, Z.T. Jiang, G.S. Huang, F.S. Pan, Mater. Sci. Eng. A 769 (2020), 138476.
DOI URL |
[7] |
Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, Q. Li, J. Alloys. Compd. 814 (2020), 152297.
DOI URL |
[8] |
C.Q. Li, D.K. Xu, X.B. Chen, B.J. Wang, R.Z. Wu, E.H. Han, N. Birbilis, Electrochim. Acta 260 (2018) 55-64.
DOI URL |
[9] | J.Y. Zhang, M. Xu, X.Y. Teng, M. Zuo, J. Magn. Alloys 4 (2016) 319-325. |
[10] |
Q. Xiang, B. Jiang, Y.X. Zhang, X.B. Chen, J.F. Song, J.Y. Xu, L. Fang, F.S. Pan, Corros. Sci. 119 (2017) 14-22.
DOI URL |
[11] | T.Z. Wang, T.L. Zhu, J.F. Sun, R.Z. Wu, M.L. Zhang, J. Magn. Alloys 3 (2015) 345-351. |
[12] | X.B. Liu, D.Y. Shan, Y.W. Song, E.H. Han, J. Magn. Alloys 5 (2017) 26-34. |
[13] | Q.T. Jiang, X.Z. Lv, D.Z. Lu, J. Zhang, B.R. Hou, J. Magn. Alloys 6 (2018) 346-355. |
[14] |
Y. Shao, R.C. Zeng, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 615-629.
DOI URL |
[15] | Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, Y.F. Zheng, J. Magn. Alloys 8 (2020) 42-65. |
[16] |
J. Chen, L. Wu, X.X. Ding, Q. Liu, X. Dai, J.F. Song, B. Jiang, A. Atrens, F.S. Pan, J. Mater. Sci. Technol. (2019) http://dx.doi.org/10.1016/j.jmst.2019.10.007.
DOI URL PMID |
[17] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[18] | Y.O. Ma, T.F. Zhang, W.J. He, Q. Luo, Z.W. Li, W. Zhang, J.P. He, Q. Li, Int. J. Hydrogen Energy 45 (2020) 12048-12070. |
[19] | Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Huai, Q. Li, J. Magn. Alloys 7 (2019) 58-71. |
[20] | Y.C. Lyu, Y.C. Liu, Z.E. Yu, N. Su, Y. Liu, W.X. Li, Q. Li, B.K. Guo, B. Liu, Sustain. Mater. Technol. 21 (2019), e00098. |
[21] |
R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, E.H. Han, Corros. Sci. 79 (2014) 69-82.
DOI URL |
[22] | Y.H. Sun, R.C. Wang, C.Q. Peng, Y. Feng, M. Yang, Trans. Nonferrous Met. Soc. China 27 (2017) 1455-1475. |
[23] |
J.J. He, B. Jiang, J. Xu, J.Y. Zhang, X.W. Yu, B. Liu, F.S. Pan, J. Alloys. Compd. 723 (2017) 213-224.
DOI URL |
[24] | A. Atrens, G.L. Song, F.Y. Cao, Z.M. Shi, P.K. Bowen, J. Magn. Alloys 1 (2013) 177-200. |
[25] |
B. Jiang, Q. Xiang, A. Atrens, J.F. Song, F.S. Pan, Corros. Sci. 126 (2017) 374-380.
DOI URL |
[26] |
N.G. Wang, R.C. Wang, C.Q. Peng, B. Peng, Y. Feng, C.W. Hu, Electrochim. Acta 149 (2014) 193-205.
DOI URL |
[27] |
N.G. Wang, R.C. Wang, Y. Feng, W.H. Xiong, J.C. Zhang, M. Deng, Corros. Sci. 112 (2016) 13-24.
DOI URL |
[28] |
Y. Feng, W.H. Xiong, J.C. Zhang, R.C. Wang, N.G. Wang, J. Mater. Chem. A Mater. Energy Sustain 4 (2016) 8658-8668.
DOI URL |
[29] | M. Yuasa, X.S. Huang, K. Suzuki, M. Mabuchi, Y. Chino, J. Power Sources 297 (2015) 449-456. |
[30] | A. Bahmani, S. Arthanari, K.S. Shin, J. Magn. Alloys 7 (2019) 38-46. |
[31] | W.Y. Jiang, J.F. Wang, W.K. Zhao, Q.S. Liu, D.M. Jiang, S.F. Guo, J. Magn. Alloys 7 (2019) 15-26. |
[32] | X.B. Zhang, J.W. Dai, R.F. Zhang, Z.X. Ba, N. Birbilis, J. Magn. Alloys 7 (2019) 240-248. |
[33] | R. Radha, D. Sreekanth, J. Magn. Alloys 8 (2020) 452-460. |
[34] |
Y.J. Feng, L. Wei, X.B. Chen, M.C. Li, Y.F. Cheng, Q. Li, Corros. Sci. 159 (2019), 108133.
DOI URL |
[35] |
G.S. Huang, Y.C. Zhao, Y.X. Wang, H. Zhang, F.S. Pan, Mater. Lett. 113 (2013) 46-49.
DOI URL |
[36] |
N.G. Wang, Y.C. Mu, W.H. Xiong, J.C. Zhang, Q. Li, Z.C. Shi, Corros. Sci. 144 (2018) 107-126.
DOI URL |
[37] |
T. Zhang, Y.W. Shao, G.Z. Meng, Z.Y. Cui, F.H. Wang, Corros. Sci. 53 (2011) 1960-1968.
DOI URL |
[38] |
N.N. Aung, W. Zhou, Corros. Sci. 52 (2010) 589-594.
DOI URL |
[39] |
G.L. Song, Z.Q. Xu, Corros. Sci. 54 (2012) 97-105.
DOI URL |
[40] |
Y.C. Shi, C.Q. Peng, Y. Feng, R.C. Wang, N.G. Wang, Mater. Des. 124 (2017) 24-33.
DOI URL |
[41] |
G.L. Song, Z.Q. Xu, Electrochim. Acta 55 (2010) 4148-4161.
DOI URL |
[42] | D. Ahmadkhaniha, M. Fedel, M.H. Sohi, F. Deflorian, Surf.Eng. Appl. ElectroChem. 53 (2017) 439-448. |
[43] |
Y.C. Zhao, G.S. Huang, C. Zhang, L. Chen, T.Z. Han, F.S. Pan, Rare Met. Mater. Eng. 47 (2018) 1064-1068.
DOI URL |
[44] |
X.D. Li, H.M. Lu, S.Q. Yuan, J.J. Bai, J.R. Wang, Y. Cao, Q.S. Hong, J. ElectroChem. Soc. 164 (2017) A3131-A3137.
DOI URL |
[45] | Y.B. Ma, N. Li, D.Y. Li, M.L. Zhang, X.M. Huang, J. Power Sources 196 (2011) 2346-2350. |
[46] | Y. Feng, G. Lei, Y.Q. He, R.C. Wang, X.F. Wang, Trans. Nonferrous Met. Soc. China 28 (2018) 2274-2286. |
[47] |
J.L. Ma, G.X. Wang, Y.Q. Li, C.H. Qin, F.Z. Ren, J. Mater. Eng. Perform. 28 (2019) 2873-2880.
DOI URL |
[48] | X. Liu, J.L. Xue, Energy 189 (2019), 116314. |
[49] | X. Liu, J.L. Xue, P.J. Zhang, Z.J. Wang, J. Power Sources 414 (2019) 174-182. |
[50] | M. Deng, D. Höche, S.V. Lamaka, D. Snihirova, M.L. Zheludkevich, J. Power Sources 396 (2018) 109-118. |
[51] |
X. Liu, Z.C. Guo, J.L. Xue, P.J. Zhang, Int. J. Energy Res. 43 (2019) 4569-4579.
DOI URL |
[1] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[3] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[4] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[5] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[6] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[7] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[8] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[9] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[10] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[11] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[12] | Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 46(0): 107-113. |
[13] | H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 190-202. |
[14] | Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46(0): 1-11. |
[15] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||