J. Mater. Sci. Technol. ›› 2021, Vol. 74: 136-142.DOI: 10.1016/j.jmst.2020.10.037
• Research Article • Previous Articles Next Articles
Qingkai Shen, Xiangdong Kong, Xizhang Chen*()
Received:
2020-07-10
Revised:
2020-07-28
Accepted:
2020-08-24
Published:
2021-05-30
Online:
2020-10-21
Contact:
Xizhang Chen
About author:
*E-mail address: kernel.chen@gmail.com (X. Chen).Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties[J]. J. Mater. Sci. Technol., 2021, 74: 136-142.
Sample | Current (A) | Voltage (V) | Wire feed speed (m/min) | Torch travel speed (mm/s) | Heat input (J/mm) |
---|---|---|---|---|---|
1 | 156 | 16.2 | 5.5 | 8 | 315.9 |
2 | 156 | 16.2 | 5.5 | 10 | 252.7 |
3 | 156 | 16.2 | 5.5 | 12 | 210.6 |
Table 1 Process parameters of CCW-AAM deposition of HEAs.
Sample | Current (A) | Voltage (V) | Wire feed speed (m/min) | Torch travel speed (mm/s) | Heat input (J/mm) |
---|---|---|---|---|---|
1 | 156 | 16.2 | 5.5 | 8 | 315.9 |
2 | 156 | 16.2 | 5.5 | 10 | 252.7 |
3 | 156 | 16.2 | 5.5 | 12 | 210.6 |
Fig. 2. Samples of Al-Co-Cr-Fe-Ni HEA fabricated using CCW-AAM: (a) 8 mm/s travel speed; (b) 10 mm/s travel speed; (c) 12 mm/s travel speed; (d) vacuum arc casting.
Specimens | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
CCW-AAM | 20.13 ± 0.42 | 17.08 ± 0.21 | 3.18 ± 0.21 | 27.18 ± 0.29 | 32.42 ± 0.51 |
Casting | 22.14 ± 1.05 | 16.73 ± 0.37 | 2.96 ± 0.01 | 25.73 ± 0.19 | 32.44 ± 0.48 |
Table 2 Chemical compositions (at.%) of HEAs fabricated by CCW-AAM and casting.
Specimens | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
CCW-AAM | 20.13 ± 0.42 | 17.08 ± 0.21 | 3.18 ± 0.21 | 27.18 ± 0.29 | 32.42 ± 0.51 |
Casting | 22.14 ± 1.05 | 16.73 ± 0.37 | 2.96 ± 0.01 | 25.73 ± 0.19 | 32.44 ± 0.48 |
Fig. 4. Phase maps and grain size distribution within the HEA: (a) and (b) 8 mm/s travel speed, (c) and (d) 10 mm/s travel speed, (e) and (f) 12 mm/s travel speed, (g) and (h) casting specimens.
Fig. 8. Compressive test results of HEA prepared by CCW-AAM and casting process: (a) stress-strain curves; (b) variation of compression mechanical properties (YS, UTS and EL) with test specimens.
Alloy | σy (MPa) | σmax (MPa) | εp (%) |
---|---|---|---|
AlCoCrFeNi [ | 1209 | 2003 | 23.0 |
Al0.6CoFeNiCr0.4 [ | 668 | 1324 | 39.0 |
CoCrCuFeNiTi0.8 [ | 1042 | 1848 | 2.1 |
AlCoCrFeNiCu [ | 1169 | 1918 | 17.9 |
This work (CCW-AAM) | 816 | 2835 | 41.8 |
This work (Casting) | 887 | 2723 | 37.4 |
Table 3 Room temperature compression mechanical properties.
Alloy | σy (MPa) | σmax (MPa) | εp (%) |
---|---|---|---|
AlCoCrFeNi [ | 1209 | 2003 | 23.0 |
Al0.6CoFeNiCr0.4 [ | 668 | 1324 | 39.0 |
CoCrCuFeNiTi0.8 [ | 1042 | 1848 | 2.1 |
AlCoCrFeNiCu [ | 1169 | 1918 | 17.9 |
This work (CCW-AAM) | 816 | 2835 | 41.8 |
This work (Casting) | 887 | 2723 | 37.4 |
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[3] |
J.W. Yeh, Ann. Chim. Sci. Mater. 31 (2006) 633-648.
DOI URL |
[4] |
C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 881-893.
DOI URL |
[5] |
F.J. Wang, Y. Zhang, G.L. Chen, J. Alloys Compd. 478 (2009) 321-324.
DOI URL |
[6] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[7] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[8] |
J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103 (2007) 41-46.
DOI URL |
[9] |
Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, M.C. Gao, MRS Commun. 4 (2014) 57-62.
DOI URL |
[10] |
Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90 (2007), 181904.
DOI URL |
[11] |
X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15 (2007) 357-362.
DOI URL |
[12] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[13] |
J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Wear 261 (2006) 513-519.
DOI URL |
[14] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59 (2011) 6308-6317.
DOI URL |
[15] |
Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Corros. Sci. 52 (2010) 1026-1034.
DOI URL |
[16] |
Q.F. Ye, K. Feng, Z.G. Li, F.G. Lu, R.F. Li, J. Huang, Y.X. Wu, Appl. Surf. Sci. 396 (2017) 1420-1426.
DOI URL |
[17] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[18] |
J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, Y. Zhang, Mater. Sci. Forum 688 (2011) 419-425.
DOI URL |
[19] |
M.A. Laktionova, E.D. Tabchnikova, Z. Tang, P.K. Liaw, Low Temp. Phys. 39 (2013) 630-632.
DOI URL |
[20] |
W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917-1928.
DOI URL |
[21] |
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (2013) 133-164.
DOI URL |
[22] |
P. Sreeramagiri, A. Bhagavatam, A. Ramakrishnan, H. Alrehaili, G.P. Dinda, J. Mater. Sci. Technol. 47 (2020) 20-28.
DOI URL |
[23] | C.A. Brice, B.T. Rosenberger, S.N. Sankaran, K.M. Taminger, B. Woods, R. Nasserrafi, Mater. Sci.Forum 618-619 (2009) 155-158. |
[24] |
Y. Ma, D. Cuiuri, N. Hoye, H. Li, Z. Pan, Mater. Sci. Eng. A 631 (2015) 230-240.
DOI URL |
[25] |
C.C. Su, X.Z. Chen, C. Gao, Y.F. Wang, Appl. Surf. Sci. 486 (2019) 431-440.
DOI URL |
[26] |
S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove, Mater. Sci. Technol. 32 (2016) 641-647.
DOI URL |
[27] |
D.H. Ding, Z.X. Pan, D. Cuiuri, H.J. Li, Int. J. Adv. Manuf. Tech. 81 (2015) 465-481.
DOI URL |
[28] | X.Z. Chen, C.C. Su, Y.F. Wang, A.N. Siddiquee, K. Sergey, S. Jayalakshmi, R.A. Singh, J. Surf. Invest. X-Ray 12 (2019) 1278-1284. |
[29] |
Y. Brif, M. Thomas, I. Todd, Scr. Mater. 99 (2015) 93-96.
DOI URL |
[30] |
T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, Mater. Lett. 159 (2015) 12-15.
DOI URL |
[31] |
H.R. Sistla, J.W. Newkirk, F. Frank Liou, Mater. Des. 81 (2015) 113-121.
DOI URL |
[32] |
J.F. Li, S. Xiang, H.W. Luan, A. Amar, X. Liu, S.Y. Lu, Y.Y. Zeng, G.M. Le, X.Y. Wang, F.S. Qu, C.L. Jiang, G.N. Yang, J. Mater. Sci. Technol. 35 (2019) 2430-2434.
DOI URL |
[33] | Y.P. Zhang, X.Z. Chen, S. Jayalakshmi, R.A. Singh, V.B. Deev, E.S. Prusov, J. Alloys Compd. (2020) 157625. |
[34] |
Q.K. Shen, X.D. Kong, X.Z. Chen, X.K. Yao, V.B. Deev, E.S. Prusov, Mater. Lett. 282 (2021) 128736.
DOI URL |
[35] |
M. Bambach, I. Sizova, B. Sydow, S. Hemes, F. Meiners, J. Mater. Process. Technol. 282 (2020), 116689.
DOI URL |
[36] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL |
[37] |
Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloys Compd. 488 (2009) 57-64.
DOI URL |
[38] |
Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Mater. Sci. Eng. A 491 (2008) 154-158.
DOI URL |
[39] |
J. Joseph, P. Hodgson, T. Jarvis, X.H. Wu, N. Stanford, D.M. Fabijanic, Mater. Sci. Eng. A 733 (2018) 59-70.
DOI URL |
[40] |
H.Y. Chen, D.D. Gu, D.H. Dai, C.L. Ma, M.J. Xia, Mater. Sci. Eng. A 682 (2017) 279-289.
DOI URL |
[41] |
H. Attar, K.G. Prashanth, A.K. Chaubey, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Lett. 142 (2015) 38-41.
DOI URL |
[42] |
D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60 (2012) 3849-3860.
DOI URL |
[43] |
X. Zhou, K.L. Li, D.D. Zhang, X.H. Liu, J. Ma, W. Liu, Z.J. Shen, J. Alloys Compd. 631 (2015) 153-164.
DOI URL |
[44] |
W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloys Compd. 589 (2014) 143-152.
DOI URL |
[45] |
Q.W. Tian, G.J. Zhang, K.X. Yin, W.W. Wang, W.L. Cheng, Y.N. Wang, Mater. Charact. 151 (2019) 302-309.
DOI URL |
[46] |
S. Wang, Y.H. Zhao, X.T. Xu, P. Cheng, H. Hou, Mater. Chem. Phys. 244 (2020), 122700.
DOI URL |
[47] |
J.M. Zhu, J.L. Meng, J.L. Liang, Rare Metals 35 (2014) 385-389.
DOI URL |
[1] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[2] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[3] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[4] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[5] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[6] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[7] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[8] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[9] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[10] | Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure [J]. J. Mater. Sci. Technol., 2021, 73(0): 1-8. |
[11] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[12] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[13] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[14] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[15] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||