J. Mater. Sci. Technol. ›› 2021, Vol. 74: 128-135.DOI: 10.1016/j.jmst.2020.10.036
• Research Article • Previous Articles Next Articles
Tingting Xua,b,c, Ping Niuc,*(), Shulan Wanga,*(
), Li Lib,c,*(
)
Received:
2020-07-08
Revised:
2020-09-08
Accepted:
2020-09-08
Published:
2021-05-30
Online:
2020-10-20
Contact:
Ping Niu,Shulan Wang,Li Li
About author:
lilicmu@alumni.cmu.edu (L. Li).Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3[J]. J. Mater. Sci. Technol., 2021, 74: 128-135.
Fig. 1. (a) The Scheme of the synthesis process and photochemical characterization of the composite; (b) XRD patterns of PTO, CN and PTO/CN; SEM images of (c) PTO and (d) CN; (e) SEM image and EDX elemental mapping of PTO/CN; (f) Bright field TEM image of PTO/CN with selected area electron diffraction (SAED) pattern shown in the inset; (g) TEM image of PTO/CN; (h) High resolution TEM image with the lattice fringes of PTO/CN.
Fig. 2. (a) UV-vis absorption spectra and (b) valence band spectra of PTO, CN and PTO/CN; (c) Schematic of the band structure and possible charge carrier transfer within PTO/CN composite; (d) PL spectra of CN and PTO/CN; (e) Electrochemical impedance spectroscopic spectra and (f) nitrogen adsorption-desorption isotherms of CN, PTO and PTO/CN.
Samples | SBET (m2 g-1) | Smicroa) (m2 g-1) | Smeso b) (m2 g-1) | Vpore c) (cm3 g-1) | Vmicro d) (cm3 g-1) | Vmeso e) (cm3 g-1) |
---|---|---|---|---|---|---|
PTO | 2.8148 | 0.6268 | 2.1880 | 0.0239 | 0.0011 | 0.0232 |
CN | 17.7531 | 2.0565 | 15.6966 | 0.1273 | 0.0010 | 0.1259 |
PTO/CN | 26.2042 | 6.1020 | 20.1023 | 0.2357 | 0.0031 | 0.2324 |
Table 1 The surface area and pore structure of PTO, CN, PTO/CN.
Samples | SBET (m2 g-1) | Smicroa) (m2 g-1) | Smeso b) (m2 g-1) | Vpore c) (cm3 g-1) | Vmicro d) (cm3 g-1) | Vmeso e) (cm3 g-1) |
---|---|---|---|---|---|---|
PTO | 2.8148 | 0.6268 | 2.1880 | 0.0239 | 0.0011 | 0.0232 |
CN | 17.7531 | 2.0565 | 15.6966 | 0.1273 | 0.0010 | 0.1259 |
PTO/CN | 26.2042 | 6.1020 | 20.1023 | 0.2357 | 0.0031 | 0.2324 |
Fig. 3. High-resolution XPS spectra of (a) Pb 4f (PTO); (b) Ti 2p (PTO); (c) N 1s (CN); (d) Pb 4f (PTO/CN); (e) Ti 2p (PTO/CN); and (f) N 1s (PTO/CN).
Fig. 4. Evaluation of visible light activities of the samples. (a) Photocatalytic RhB degradation activities of CN, PTO and PTO/CN; (b) Photocatalytic hydrogen production of CN, PTO and PTO/CN loaded with 2% Pt as co-catalyst; (c) Photocurrent response of CN, PTO and PTO/CN during repeated measurements; (d) Photocatalytic RhB degradation comparison of PTO/CN under ultrasonic and stir condition; Schematic band structure alignment of PTO/CN (e) without and (f) with ultrasonic treatment.
Photocatalyst | Vis (Stir) Slope (min-1) | Vis (Ultrasonic) Slope (min-1) | Ultrasonic/Stir |
---|---|---|---|
g-C3N4 a | 0.0493 | 0.0552 | 112 % |
PbTiO3 b | 0.0027 | 0.0038 | 141 % |
PbTiO3 520-2 h | 0.0035 | 0.0068 | 194 % |
PbTiO3/(g-C3N4+PbTiO3) = 2 % 520-2 h | 0.0722 | 0.0794 | 110 % |
PbTiO3/(g-C3N4+PbTiO3) = 4 % 520-2 h | 0.0863 | 0.1036 | 120 % |
PbTiO3/(g-C3N4+PbTiO3) = 6 % 520-2 h | 0.0981 | 0.1177 | 120 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 520-2 h | 0.1044 | 0.1357 | 130 % |
PbTiO3/(g-C3N4+PbTiO3) = 10 % 520-2 h | 0.0672 | 0.0874 | 130 % |
PbTiO3/(g-C3N4+PbTiO3) = 50 % 520-2 h | 0.0362 | 0.0402 | 111 % |
g-C3N4 520-2 h | 0.0669 | 0.0704 | 105 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 400-2 h | 0.0463 | 0.0556 | 120 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 450-2 h | 0.0484 | 0.0629 | 130 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 550-2 h | 0.0669 | 0.0837 | 125 % |
Table 2 The photocatalytic activity of PTO/CN with different molar ratios of PbTiO3 to g-C3N4 for RhB degradation under visible light irradiation.
Photocatalyst | Vis (Stir) Slope (min-1) | Vis (Ultrasonic) Slope (min-1) | Ultrasonic/Stir |
---|---|---|---|
g-C3N4 a | 0.0493 | 0.0552 | 112 % |
PbTiO3 b | 0.0027 | 0.0038 | 141 % |
PbTiO3 520-2 h | 0.0035 | 0.0068 | 194 % |
PbTiO3/(g-C3N4+PbTiO3) = 2 % 520-2 h | 0.0722 | 0.0794 | 110 % |
PbTiO3/(g-C3N4+PbTiO3) = 4 % 520-2 h | 0.0863 | 0.1036 | 120 % |
PbTiO3/(g-C3N4+PbTiO3) = 6 % 520-2 h | 0.0981 | 0.1177 | 120 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 520-2 h | 0.1044 | 0.1357 | 130 % |
PbTiO3/(g-C3N4+PbTiO3) = 10 % 520-2 h | 0.0672 | 0.0874 | 130 % |
PbTiO3/(g-C3N4+PbTiO3) = 50 % 520-2 h | 0.0362 | 0.0402 | 111 % |
g-C3N4 520-2 h | 0.0669 | 0.0704 | 105 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 400-2 h | 0.0463 | 0.0556 | 120 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 450-2 h | 0.0484 | 0.0629 | 130 % |
PbTiO3/(g-C3N4+PbTiO3) = 8 % 550-2 h | 0.0669 | 0.0837 | 125 % |
[1] |
A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253-278.
DOI URL |
[2] |
Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 54 (2015) 12868-12884.
DOI URL |
[3] |
Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 31 (2019), 1806482.
DOI URL |
[4] |
S. Zhang, Y. Zhao, R. Shi, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Energy Mater. 10 (2020), 1901973.
DOI URL |
[5] |
C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39 (2010) 4206-4219.
DOI URL |
[6] |
B.V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chem. Eur. J. 13 (2007) 4969-4980.
DOI URL |
[7] |
X.X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[8] |
W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Nano Energy 13 (2015) 757-770.
DOI URL |
[9] |
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135 (2013) 18-21.
DOI URL |
[10] |
C. Merschjann, T. Tyborski, S. Orthmann, F. Yang, K. Schwarzburg, M. Lublow, M.C. Lux-Steiner, T. Schedel-Niedrig, Phys. Rev. B 87 (2013), 205204.
DOI URL |
[11] |
S. Patnaik, S. Martha, K.M. Parida, RSC Adv. 6 (2016) 46929-46951.
DOI URL |
[12] |
L. Li, P.A. Salvador, G.S. Rohrer, Nanoscale. 6 (2014) 24-42.
DOI PMID |
[13] |
Z. Liang, C.-F. Yan, S. Rtimi, J. Bandara, Appl. Catal. B: Environ. 241 (2019) 256-269.
DOI URL |
[14] |
F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chem. 58 (2019) 10061-10073.
DOI URL |
[15] |
C. Zhen, J.C. Yu, G. Liu, H.M. Cheng, Chem. Commun. 50 (2014) 10416-10419.
DOI URL |
[16] |
R. Li, Y. Zhao, C. Li, Faraday Discuss. 198 (2017) 463-472.
DOI URL |
[17] |
L. Li, Y. Zhang, A.M. Schultz, X. Liu, P.A. Salvador, G.S. Rohrer, Catal. Sci. Technol. 2 (2012) 1945-1952.
DOI URL |
[18] |
T. Xu, X. Liu, S. Wang, L. Li, Nano-Micro Lett. 11 (2019) 37.
DOI URL |
[19] |
G. Liu, L. Ma, L.-C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan, H.-M. Cheng, Joule 2 (2018) 1095-1107.
DOI URL |
[20] |
Y. Yuan, L. Zhang, J. Xing, M.I. Utama, X. Lu, K. Du, Y. Li, X. Hu, S. Wang, A. Genc, R. Dunin-Borkowski, J. Arbiol, Q. Xiong, Nanoscale 7 (2015) 12343-12350.
DOI URL |
[21] |
F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, Q. Zhang, Y. Wang, K. Yao, W. Lv, G. Liu, Appl. Catal. B: Environ. 207 (2017) 103-113.
DOI URL |
[22] |
Y. Hong, C. Li, Z. Fang, B. Luo, W. Shi, Carbon 121 (2017) 463-471.
DOI URL |
[23] |
Y. Yang, Z. Liu, W.K. Ng, L. Zhang, H. Zhang, X. Meng, Y. Bai, S. Xiao, T. Zhang, C. Hu, K.S. Wong, S. Yang, Adv. Funct. Mater. 29 (2019), 1806506.
DOI URL |
[24] |
Y. Liu, S. Ye, H. Xie, J. Zhu, Q. Shi, N. Ta, R. Chen, Y. Gao, H. An, W. Nie, H. Jing, F. Fan, C. Li, Adv. Mater. 32 (2020), 1906513.
DOI URL |
[25] |
T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Appl. Catal. B: Environ. 129 (2013) 255-263.
DOI URL |
[26] |
Y. Kang, Y. Yang, L.C. Yin, X. Kang, L. Wang, G. Liu, H.M. Cheng, Adv. Mater. 28 (2016) 6471-6477.
DOI URL |
[27] |
Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, Adv. Mater. 27 (2015) 4572-4577.
DOI URL |
[28] |
G. Dong, W. Ho, C. Wang, J. Mater. Chem. A 3 (2015) 23435-23441.
DOI URL |
[29] |
J. Ding, W. Xu, H. Wan, D. Yuan, C. Chen, L. Wang, G. Guan, W.-L. Dai, Appl.Catal. B: Environ. 221 (2018) 626-634.
DOI URL |
[30] |
P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Adv. Mater. 26 (2014) 8046-8052.
DOI URL |
[31] |
C. Murugan, K.B. Bhojanaa, W.-J. Ong, K. Jothivenkatachalam, A. Pandikumar, Int. J. Hydrogen Energy 44 (2019) 30885-30898.
DOI URL |
[32] |
Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5 (2013) 8326-8339.
DOI URL |
[33] |
L. Ge, C. Han, Appl. Catal. B: Environ. 117-118 (2012) 268-274.
DOI URL |
[34] |
L. Kong, J. Yan, P. Li, S.F. Liu, ACS Sustain. Chem. Eng. 6 (2018) 10436-10444.
DOI URL |
[35] |
H. Che, G. Che, P. Zhou, C. Liu, H. Dong, C. Li, N. Song, C. Li, Chem. Eng. J. 382 (2020), 122870.
DOI URL |
[36] |
H. Jia, B. Zhang, W. He, Y. Xiang, Z. Zheng, Nanoscale 9 (2017) 3180-3187.
DOI URL |
[37] |
B.-W. Sun, H.-J. Li, H.-y. Yu, D.-J. Qian, M. Chen, Carbon 117 (2017) 1-11.
DOI URL |
[38] |
M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Chem. Soc. Rev. 45 (2016) 3479-3563.
DOI URL |
[39] |
H. Wang, X. Liu, P. Niu, S. Wang, J. Shi, L. Li, Matter 2 (2020) 1377-1413.
DOI URL |
[40] |
H. Wang, X. Liu, S. Wang, L. Li, Appl. Catal. B: Environ. 222 (2018) 209-218.
DOI URL |
[41] |
B. Zhu, P. Xia, W. Ho, J. Yu, Appl. Surf. Sci. 344 (2015) 188-195.
DOI URL |
[42] |
J. Lei, Y. Chen, F. Shen, L. Wang, Y. Liu, J. Zhang, J. Alloys. Compd. 631 (2015) 328-334.
DOI URL |
[43] |
X. Lu, D. Zhang, Q. Zhao, C. Wang, W. Zhang, Y. Wei, Macromol. Rapid Commun. 27 (2006) 76-80.
DOI URL |
[44] |
P.P. Rout, R.K. Sahoo, S.K. Singh, B.K. Mishra, Vib. Spectrosc. 88 (2017) 1-8.
DOI URL |
[45] |
Z. Wei, Y. Hu, H. Han, W. Sun, J. Colloid Interface Sci. 562 (2020) 342-351.
DOI URL |
[46] |
A. Mrwa, M. Friedrich, A. Hofmann, D.R.T. Zahn, Sens. Actuators B Chem. 25 (1995) 596-599.
DOI URL |
[47] |
I. Szafraniak, M. Połomska, B. Hilczer, E. Talik, L. Kepiński, Ferroelectrics 336 (2011) 279-287.
DOI URL |
[48] | Y. Guo, S. Zhang, W. Mu, X. Li, Z. Li, Mol. Catal. 429 (2017) 18-26. |
[49] |
T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, J. Catal. 352 (2017) 532-541.
DOI URL |
[50] |
G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G. Lu, H.-M. Cheng, J. Am. Chem. Soc. 132 (2010) 11642-11648.
DOI URL |
[51] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[52] |
Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Angew. Chem. 49 (2010) 3356-3359.
DOI URL |
[53] |
R. Marschall, Adv. Funct. Mater. 24 (2014) 2421-2440.
DOI URL |
[54] |
C. Xue, H. An, X. Yan, J. Li, B. Yang, J. Wei, G. Yang, Nano Energy 39 (2017) 513-523.
DOI URL |
[55] |
H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z.L. Wang, Nano Lett. 15 (2015) 2372-2379.
DOI URL |
[56] |
Y. Feng, M. Xu, H. Liu, W. Li, H. Li, Z. Bian, Nano Energy 73 (2020), 104768.
DOI URL |
[57] |
M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei, J. Li, P.M. Ajayan, P. Sharma, Nat. Commun. 5 (2014) 4284.
DOI URL |
[58] |
K. Wang, D. Shao, L. Zhang, Y. Zhou, H. Wang, W. Wang, J. Mater. Chem. A 7 (2019) 20383-20389.
DOI URL |
[1] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
[2] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[3] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[4] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[5] | Chao Wang, Qiang Li, Weiming Zhang, Huiqing Fan. Large electric field-induced strain in the novel BNKTAN-BNBLTZ lead-free ceramics [J]. J. Mater. Sci. Technol., 2020, 45(0): 15-22. |
[6] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
[7] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
[8] | Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 18-44. |
[9] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[10] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[11] | Jianying Huang, Jiali Shen, Shuhui Li, Jingsheng Cai, Shanchi Wang, Yao Lu, Jihuan He, Claire J.Carmalt, Ivan P.Parkin, Yuekun Lai. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation [J]. J. Mater. Sci. Technol., 2020, 39(0): 28-38. |
[12] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[13] | Duoduo Gao, Ranran Yuan, Jiajie Fan, Xuekun Hong, Huogen Yu. Highly efficient S2--adsorbed MoSx-modified TiO2 photocatalysts: A general grafting strategy and boosted interfacial charge transfer [J]. J. Mater. Sci. Technol., 2020, 56(0): 122-132. |
[14] | Yang Li, Xin Li, Huaiwu Zhang, Jiajie Fan, Quanjun Xiang. Design and application of active sites in g-C3N4-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 69-88. |
[15] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||