J. Mater. Sci. Technol. ›› 2021, Vol. 74: 119-127.DOI: 10.1016/j.jmst.2020.10.017
• Research Article • Previous Articles Next Articles
Zhengkun Xiea,1, Xiaowei Ana,1, Zhijun Wua, Xiyan Yuea, Jiajia Wanga, Xiaogang Haoc, Abuliti Abudulaa,**(), Guoqing Guana,b,*(
)
Received:
2020-07-23
Revised:
2020-10-01
Accepted:
2020-10-06
Published:
2021-05-30
Online:
2020-10-20
Contact:
Abuliti Abudula,Guoqing Guan
About author:
**E-mail addresses: abuliti@hirosaki-u.ac.jp (A. Abudula).1Z. Xie and X. An contributed equally to this work.
Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries[J]. J. Mater. Sci. Technol., 2021, 74: 119-127.
MOEs | 2-FP | 3-FP | 4-FP | EC | PC | DEC | DMC | EMC |
---|---|---|---|---|---|---|---|---|
LUMO (eV) | -2.0300 | -1.6327 | -1.7435 | -0.2721 | -0.3184 | -0.0517 | -0.2015 | -0.1318 |
HOMO (eV) | -6.6125 | -5.9867 | -6.1987 | -6.9662 | -6.8723 | -6.5309 | -6.7180 | -6.6271 |
Table 1 Molecular orbital energies (MOEs) of FP and routine carbonate-based solvents.
MOEs | 2-FP | 3-FP | 4-FP | EC | PC | DEC | DMC | EMC |
---|---|---|---|---|---|---|---|---|
LUMO (eV) | -2.0300 | -1.6327 | -1.7435 | -0.2721 | -0.3184 | -0.0517 | -0.2015 | -0.1318 |
HOMO (eV) | -6.6125 | -5.9867 | -6.1987 | -6.9662 | -6.8723 | -6.5309 | -6.7180 | -6.6271 |
Fig. 1. (A) Various Li+-FPs binding energies in vacuum and electrolyte solutions; (B) The electron density distribution of 2-FP-Li+ interaction; The relaxed structure of (C) 2-FP and (D) FEC adsorbed on the Li(100) surface. The related binding energies are 0.266 eV and 0.603 eV, respectively.
Fig. 2. (A) Linear sweep voltammetry (LSV) curve of the 1 M LiTFSI in pure 2-FP solvent with a scan rate of 0.1 mV s-1. Inset shows the enlarge view of LSV curve. (B) Cycling performances of NMC111 (1.5 mA h cm-2)|Li metal batteries with 1 M LiTFSI or LiPF6 in the electrolyte with pure 2-FP solvent. (C) Voltage profiles and (D) SEM image of the Li anode retrieved from NMC111|Li metal batteries with 1 M LiTFSI in 2-FP electrolyte.
Fig. 3. (A) Coulombic efficiencies and (B) EIS changes of Li|Cu cells; Cycling performances of (C) Li|Li symmetrical cells and (D) NMC111|Li metal batteries with 30 μL LiPF6 electrolytes in the absence and presence of 1% of 3-FP additive under 30 °C. Insets of (A) and (B) show the voltage profiles of Li|Cu cells during the first cycle and the equivalent circuit, respectively.
Fig. 4. SEM images of the electrodes retrieved from Li|Cu cells: top views and cross-section views with (Cu side: A, B; Li side: C) and without (Cu side: D, E; Li side: F) 1% of 3-FP additive after cycles. Insets show the enlarged views of Li anodes. Scale bar: 50 μm.
Fig. 5. SEM images of the Li anode electrodes retrieved from NMC111|Li metal batteries without (A) and with (B) 1% of 3-FP electrolyte additive after cycles; XPS spectra of (C) F 1 s and (D) N 1s for above Li metal anodes.
[1] |
P. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 3 (2018) 16-21.
DOI URL |
[2] |
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M.F. Toney, V.V. Viswanathan, M.S. Whittingham, J. Xiao, W. Xu, J. Yang, X.Q. Yang, J.G. Zhang, Nat. Energy 4 (2019) 180-186.
DOI URL |
[3] |
Y. Sun, J. Huang, H. Xiang, X. Liang, Y. Feng, Y. Yu, J. Mater. Sci. Technol. 55 (2020) 198-202.
DOI URL |
[4] |
J. Zhang, X. Yao, R.K. Misra, Q. Cai, Y. Zhao, J. Mater. Sci. Technol. 44 (2020) 237-257.
DOI URL |
[5] |
Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, G. Guan, Renewable Sustainable Energy Rev. 109 (2019) 367-385.
DOI URL |
[6] |
H. Du, S. Feng, W. Luo, L. Zhou, L. Mai, J. Mater. Sci. Technol. 55 (2020) 1-15.
DOI URL |
[7] |
Z. Xie, Z. Wu, X. An, A. Yoshida, Z. Wang, X. Hao, A. Abudula, G. Guan, J. Membr. Sci. 586 (2019) 122-129.
DOI URL |
[8] |
Y.Y. Wang, Z.J. Wang, D.N. Lei, W. Lv, Q. Zhao, B. Ni, Y. Liu, B.H. Li, F.Y. Kang, Y.B. He, ACS Appl. Mater. Interfaces 10 (2018) 20244-20249.
DOI URL |
[9] |
E. Kazyak, K.N. Wood, N.P. Dasgupta, Chem. Mater. 27 (2015) 6457-6462.
DOI URL |
[10] |
J. Schnell, H. Knörzer, A.J. Imbsweiler, G. Reinhart, Energy Technol. 8 (2020), 1901237.
DOI URL |
[11] | Y. Ma, Z. Zhou, C. Li, L. Wang, Y. Wang, X. Cheng, P. Zuo, C. Du, H. Huo, Y. Gao, G. Yin, Energy Storage Mater. 11 (2018) 197-204. |
[12] |
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 4 (2019) 269-280.
DOI |
[13] |
T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.J. Huang, C.H. Wang, W.N. Su, H. Dai, B.J. Hwang, J. Electrochem. Soc. 166 (2019) A1501-A1509.
DOI URL |
[14] |
W. Xue, Z. Shi, M. Huang, S. Feng, C. Wang, F. Wang, J. Lopez, B. Qiao, G. Xu, W. Zhang, Y. Dong, R. Gao, Y. Shao-Horn, J.A. Johnson, J. Li, Energy Environ. Sci. 13 (2020) 212-220.
DOI URL |
[15] |
J.J. Woo, V.A. Maroni, G. Liu, J.T. Vaughey, D.J. Gosztola, K. Amine, Z. Zhang, J. Electrochem. Soc. 161 (2014) A827-A830.
DOI URL |
[16] |
T. Doi, Y. Shimizu, M. Hashinokuchi, M. Inaba, J. Electrochem. Soc. 164 (2017) A6412-A6416.
DOI URL |
[17] | J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi, Y. Xu, S. Hwang, L. Chen, X. Ji, C. Yang, H. He, C. Wang, E. Garfunkel, D. Su, O. Borodin, C. Wang, Nat. Energy 5 (2020) 386-397. |
[18] |
D. Aurbach, J. Power Sources 89 (2000) 206-218.
DOI URL |
[19] |
Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D.G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C.V. Amanchukwu, S.T. Hung, Y. Ma, E.G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 5 (2020) 526-533.
DOI URL |
[20] |
X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 27 (2017), 1605989.
DOI URL |
[21] |
H. Ota, K. Shima, M. Ue, Ji. Yamaki, Electrochim. Acta 49 (2004) 565-572.
DOI URL |
[22] |
N. von Aspern, G.V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Angew. Chem. Int. Ed. 58 (2019) 15978-16000.
DOI URL |
[23] |
Z. Xie, Z. Wu, X. An, X. Yue, A. Yoshida, X. Du, X. Hao, A. Abudula, G. Guan, Chem. Eng. J. 393 (2020), 124789.
DOI URL |
[24] |
J. Landesfeind, A. Ehrl, M. Graf, W.A. Wall, H.A. Gasteiger, J. Electrochem. Soc. 163 (2016) A1254-A1264.
DOI URL |
[25] |
C. Park, M. Kanduč, R. Chudoba, A. Ronneburg, S. Risse, M. Ballauff, J. Dzubiella, J. Power Sources 373 (2018) 70-78.
DOI URL |
[26] |
W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang, H. Wang, K.P. So, A. Maurano, D. Yu, Y. Chen, L. Qie, Z. Zhu, G. Xu, J. Kong, J. Li, Nat. Energy 4 (2019) 374-382.
DOI URL |
[27] |
T. Yang, W. Fan, C. Wang, Q. Lei, Z. Ma, L. Yu, X. Zuo, J. Nan, ACS Appl. Mater. Interfaces 10 (2018) 31735-31744.
DOI URL |
[28] |
H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, J. Electrochem. Soc. 151 (2004) A1659-A1669.
DOI URL |
[29] |
S. Zhu, C. Xing, W. Xu, Z. Li, Tetrahedron Lett. 45 (2004) 777-780.
DOI URL |
[30] |
K. Xu, Chem. Rev. 114 (2014) 11503-11618.
DOI URL |
[31] |
X. Chen, X.Q. Zhang, H.R. Li, Q. Zhang, Batter. Supercaps 2 (2019) 128-131.
DOI URL |
[32] |
X.Q. Zhang, X. Chen, X.B. Cheng, B.Q. Li, X. Shen, C. Yan, J.Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 57 (2018) 5301-5305.
DOI URL |
[33] |
J. Vatamanu, O. Borodin, G.D. Smith, J. Phys. Chem. C 116 (2012) 1114-1121.
DOI URL |
[34] |
X.D. Ren, L.F. Zou, S.H. Jiao, D.H. Mei, M.H. Engelhard, Q.Y. Li, H. Lee, C.J. Niu, B.D. Adams, C.M. Wang, J. Liu, J.G. Zhang, W. Xu, ACS Energy Lett. 4 (2019) 896-902.
DOI URL |
[35] |
Y. He, Y. Zhang, P. Yu, F. Ding, X. Li, Z. Wang, Z. Lv, X. Wang, Z. Liu, X. Huang, J. Energy Chem. 45 (2016) 1-6.
DOI URL |
[36] |
J. Vatamanu, O. Borodin, J. Phys. Chem. Lett. 8 (2017) 4362-4367.
DOI PMID |
[37] |
J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, Nat. Commun. 6 (2015) 6362.
DOI URL |
[38] |
C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu, P.Y. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, Proc. Natl. Acad. Sci. Unit. States Am. 114 (2017) 11069-11074.
DOI URL |
[39] |
A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, npj Comput. Mater. 4 (2018) 15.
DOI URL |
[40] | Z. Xie, Z. Wu, X. An, X. Yue, J. Wang, A. Abudula, G. Guan, Energy Storage Mater. 32 (2020) 386-401. |
[41] |
T. Kang, J. Zhao, F. Guo, L. Zheng, Y. Mao, C. Wang, Y. Zhao, J. Zhu, Y. Qiu, Y. Shen, L. Chen, ACS Appl. Mater. Interfaces 12 (2020) 8168-8175.
DOI URL |
[42] |
T. Kawaguchi, K. Shimada, T. Ichitsubo, S. Yagi, E. Matsubara, J. Power Sources 271 (2014) 431-436.
DOI URL |
[43] |
N.Q. Liang, J.H. Fang, X.X. Guo, J. Mater. Chem. A 5 (2017) 15087-15095.
DOI URL |
[44] |
Y. Gu, H.Y. Xu, X.G. Zhang, W.W. Wang, J.W. He, S. Tang, J.W. Yan, D.Y. Wu, M.S. Zheng, Q.F. Dong, B.W. Mao, Angew. Chem. Int. Ed. 58 (2019) 3092-3096.
DOI URL |
[45] |
C.Z. Zhao, P.Y. Chen, R. Zhang, X. Chen, B.Q. Li, X.Q. Zhang, X.B. Cheng, Q. Zhang, Sci. Adv. 4 (2018), eaat3446.
DOI URL |
[46] |
T.T. Hagos, B. Thirumalraj, C.J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.F. Chiu, W.N. Su, B.J. Hwang, ACS Appl. Mater. Interfaces 11 (2019) 9955-9963.
DOI URL |
[47] |
Z. Xie, Z. Wu, X. An, X. Yue, P. Xiaokaiti, A. Yoshida, A. Abudula, G. Guan, J. Membr. Sci. 596 (2020), 117739.
DOI URL |
[48] |
W.D. Zhang, Q. Wu, J.X. Huang, L. Fan, Z.Y. Shen, Y. He, Q. Feng, G.N. Zhu, Y.Y. Lu, Adv. Mater. 32 (2020), 2001740.
DOI URL |
[49] |
J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.G. Zhang, W. Xu, Nat. Energy 2 (2017) 17012.
DOI URL |
[50] |
C. Shen, G.H. Hu, L.Z. Cheong, S.Q. Huang, J.G. Zhang, D.Y. Wang, Small Meth. 2 (2018), 1700298.
DOI URL |
[51] |
C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 130 (2018) 14251-14255.
DOI URL |
[52] |
K. Park, J.B. Goodenough, Adv. Energy Mater. 7 (2017), 1700732.
DOI URL |
[53] |
B. Chen, B. Zhao, J. Zhou, Z. Fang, Y. Huang, X. Zhu, Y. Sun, J. Mater. Sci. Technol. 35 (2019) 994-1002.
DOI URL |
[54] |
H. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q.-H. Yang, F. Kang, J. Lu, Adv. Energy Mater. 8 (2018), 1800266.
DOI URL |
[55] | P. Shi, X.Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, Int. J. Adv. Mater. Technol. 5 (2020), 1900806. |
[56] |
J. Ni, X. Zhu, Y. Yuan, Z. Wang, Y. Li, L. Ma, A. Dai, M. Li, T. Wu, R. Shahbazian-Yassar, J. Lu, L. Li, Nat. Commun. 11 (2020) 1212.
DOI URL |
[57] |
J.F. Ni, M.L. Sun, L. Li, Adv. Mater. 31 (2019), 1902603.
DOI URL |
[1] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[2] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||