J. Mater. Sci. Technol. ›› 2020, Vol. 46: 64-73.DOI: 10.1016/j.jmst.2019.10.020
• Research Article • Previous Articles Next Articles
Chunduo Daia,b, Tianliang Zhaod, Cuiwei Dua,b,c,*(), Zhiyong Liua,b,*(
), Dawei Zhanga,b
Received:
2019-08-25
Revised:
2019-10-04
Accepted:
2019-10-17
Published:
2020-06-01
Online:
2020-06-19
Contact:
Cuiwei Du,Zhiyong Liu
Chunduo Dai, Tianliang Zhao, Cuiwei Du, Zhiyong Liu, Dawei Zhang. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 46: 64-73.
Alloy | Fe | Co | Ni | Cr | Mo |
---|---|---|---|---|---|
Mo0 | 24.77 | 26.14 | 26.03 | 23.06 | - |
Mo0.1 | 23.76 | 25.07 | 24.97 | 22.12 | 4.08 |
Mo0.3 | 21.97 | 23.18 | 23.08 | 20.45 | 11.32 |
Mo0.6 | 19.74 | 20.82 | 20.74 | 18.37 | 20.33 |
Table 1 Chemical compositions of as-cast FeCoCrNiMox alloys (wt%).
Alloy | Fe | Co | Ni | Cr | Mo |
---|---|---|---|---|---|
Mo0 | 24.77 | 26.14 | 26.03 | 23.06 | - |
Mo0.1 | 23.76 | 25.07 | 24.97 | 22.12 | 4.08 |
Mo0.3 | 21.97 | 23.18 | 23.08 | 20.45 | 11.32 |
Mo0.6 | 19.74 | 20.82 | 20.74 | 18.37 | 20.33 |
Fig. 2. Microstructures of the FeCoCrNiMox alloys in different statuses: (a-d) SEM microstructure of the alloys after metallographic etching; (e-h) SEM microstructure of the alloys after electrochemical polishing. (a, e) Mo0, (b, f) Mo0.1, (c, g) Mo0.3 and (d, h) Mo0.6.
Alloy | Structure and phase | Fe | Co | Ni | Cr | Mo |
---|---|---|---|---|---|---|
Mo0.1 | Dendrite, 1 | 24.27 | 25.52 | 24.94 | 21.23 | 4.04 |
Inter-dendrite, 2 | 22.89 | 23.90 | 24.32 | 23.07 | 5.82 | |
Mo0.3 | Dendrite, 1 | 22.51 | 24.44 | 24.07 | 19.95 | 9.03 |
Inter-dendrite, 2 | 21.54 | 21.96 | 22.30 | 21.23 | 12.97 | |
Second phase, 3 | 17.51 | 19.01 | 17.48 | 22.05 | 23.95 | |
Mo0.6 | Dendrite, 1 | 22.03 | 22.69 | 22.78 | 18.61 | 13.89 |
Second phase, 2 | 18.43 | 19.78 | 17.21 | 19.91 | 24.67 |
Table 2 Chemical composition analysis of the regions marked in Fig. 2 (wt%).
Alloy | Structure and phase | Fe | Co | Ni | Cr | Mo |
---|---|---|---|---|---|---|
Mo0.1 | Dendrite, 1 | 24.27 | 25.52 | 24.94 | 21.23 | 4.04 |
Inter-dendrite, 2 | 22.89 | 23.90 | 24.32 | 23.07 | 5.82 | |
Mo0.3 | Dendrite, 1 | 22.51 | 24.44 | 24.07 | 19.95 | 9.03 |
Inter-dendrite, 2 | 21.54 | 21.96 | 22.30 | 21.23 | 12.97 | |
Second phase, 3 | 17.51 | 19.01 | 17.48 | 22.05 | 23.95 | |
Mo0.6 | Dendrite, 1 | 22.03 | 22.69 | 22.78 | 18.61 | 13.89 |
Second phase, 2 | 18.43 | 19.78 | 17.21 | 19.91 | 24.67 |
Fig. 5. Corrosion morphology of Mo0 and Mo0.1?Mo0.6 alloys after immersion in 6 wt% FeCl3 + 0.05 M HCl solution at 60 °C for 36 h and 120 h, respectively: (a) Mo0 alloy after immersion for 36 h, (b) Mo0.1 alloy after immersion for 120 h, (c, d) Mo0.3 alloy after immersion for 120 h, (e, f) Mo0.6 alloy after immersion for 120 h.
Fig. 6. SEM and 3D images of the anodic dissolution morphologies of the FeCoCrNiMox alloy after polarization tests in 1 M NaCl at ambient temperature, (a1?c1) Mo0 alloy (a2?c2) Mo0.1 alloy, (a3?c3) Mo0.3 alloy, (a4?c4) Mo0.6 alloy. (a1?a4) and (b1?b4) SEM images and 3D morphologies after polarization for 600 s; (c1?c4) 3D morphologies after polarization for 1800s.
Fig. 7. EPMA mapping of the elements in the Mo0, Mo0.1 and Mo0.3 alloys after polishing away the anodic dissolution layer: (a1) Mo0 alloy, (a2) Mo0.1 alloy, (a3) Mo0.3 alloy.
Alloys | Fe | Co | Cr | Ni | Mo |
---|---|---|---|---|---|
Mo0 | 23.95 | 15.73 | 42.35 | 17.97 | |
Mo0.1 | 29.32 | 14.86 | 37.68 | 14.21 | 3.93 |
Table 3 Atomic compositions of Fe, Co, Cr, Ni and Mo elements in the passive films (at.%).
Alloys | Fe | Co | Cr | Ni | Mo |
---|---|---|---|---|---|
Mo0 | 23.95 | 15.73 | 42.35 | 17.97 | |
Mo0.1 | 29.32 | 14.86 | 37.68 | 14.21 | 3.93 |
Fig. 9. XPS spectra of the passive film formed on the Mo0 and Mo0.1 alloys: (a) Cr 2p3/2, (b) Fe 2p3/2, (c) Ni 2p3/2, (d) Co 2p3/2, (e) O 1s and (f) Mo 3d peaks in Mo0.1 alloy.
Elements | Compounds | Binding Energy (eV) Mo0 alloy/Mo0.1 alloy | Mo0 alloy (%) | Mo0.1 alloy (%) |
---|---|---|---|---|
Fe 2p3/2 | Fe2O3 | 710.4 / 710.4 | 5.17 | 9.42 |
FeOOH | 711.8 / 711.8 | 19.85 | 23.19 | |
Cr 2p3/2 | Cr2O3 | 575.9 / 576.2 | 18.67 | 20.25 |
Cr(OH)3 | 577.1 / 577.1 | 35.97 | 28.33 | |
Ni 2p3/2 | NiO | 853.5 / 853.9 | 7.32 | 1.50 |
Ni(OH)2 | 855.8 / 855.5 | 3.61 | 5.30 | |
Co 2p3/2 | Co3O4 | 780.1 / 779.4 | 7.78 | 2.36 |
Co(OH)2 | 782.1 / 781.0 | 1.63 | 5.80 | |
Mo 3d | Mo4+ 3d3/2 | 231.6 | — | 3.85 |
Mo4+ 3d5/2 | 228.5 | — | ||
Mo6+ 3d3/2 | 235.6 | — | ||
Mo6+ 3d5/2 | 232.4 | — |
Table 4 Binding energies and contents of the main components extracted from XPS analysis.
Elements | Compounds | Binding Energy (eV) Mo0 alloy/Mo0.1 alloy | Mo0 alloy (%) | Mo0.1 alloy (%) |
---|---|---|---|---|
Fe 2p3/2 | Fe2O3 | 710.4 / 710.4 | 5.17 | 9.42 |
FeOOH | 711.8 / 711.8 | 19.85 | 23.19 | |
Cr 2p3/2 | Cr2O3 | 575.9 / 576.2 | 18.67 | 20.25 |
Cr(OH)3 | 577.1 / 577.1 | 35.97 | 28.33 | |
Ni 2p3/2 | NiO | 853.5 / 853.9 | 7.32 | 1.50 |
Ni(OH)2 | 855.8 / 855.5 | 3.61 | 5.30 | |
Co 2p3/2 | Co3O4 | 780.1 / 779.4 | 7.78 | 2.36 |
Co(OH)2 | 782.1 / 781.0 | 1.63 | 5.80 | |
Mo 3d | Mo4+ 3d3/2 | 231.6 | — | 3.85 |
Mo4+ 3d5/2 | 228.5 | — | ||
Mo6+ 3d3/2 | 235.6 | — | ||
Mo6+ 3d5/2 | 232.4 | — |
Fig. 11. Topographical and Volta potential mappings of the Mo0.3 alloy and line-scan section analysis results obtained from the SKPFM analysis. (a) Topographical mappings (b) Volta potential mappings (c) line-scan section analysis obtained from Fig. 11(b).
[1] | S.J. Zinkle, G.S. Was, Acta Mater. 61(2013) 735-758. |
[2] | J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, R. Ojeda, J. Loss Prev. Process Ind. 37(2015) 39-62. |
[3] | T. Zhao, Z. Liu, L. Chao, C. Dai, C. Du, X. Li, J. Mater. Eng. Perform. 27(2018) 4921-4931. |
[4] |
Q. Hou, Z. Liu, C. Li, X. Li, Corros. Sci. 128(2017) 154-163.
DOI URL |
[5] |
X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, C. Dong, Nature 527 (2015) 441-442.
DOI URL |
[6] | Z. Feng, X. Cheng, C. Dong, L. Xu, X. Li, Corros. Sci. 52(2010) 3646-3653. |
[7] |
T. Zhao, Z. Liu, C. Du, C. Liu, X. Xu, X. Li, Corros. Sci. 142(2018) 277-283.
DOI URL |
[8] | C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Corros. Sci. 129(2017) 82-90. |
[9] |
C. Liu, R.I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, H. Terryn, Corros. Sci. 138(2018) 96-104.
DOI URL |
[10] | D. Kong, C. Dong, X. Ni, X. Li, NPJ Mater. Degrad. 3(2019) 1-14. |
[11] | E. Bettini, U. Kivisäkk, C. Leygraf, J. Pan, Int. J. Electrochem. Soc. 9(2013) 61-80. |
[12] |
O. Conejero, M. Palacios, S. Rivera, Eng. Fail. Anal. 16(2009) 699-704.
DOI URL |
[13] |
G.P. Halada, D.P. Kim, C.R. Clayton, Corrosion 52 (1996) 36-46.
DOI URL |
[14] |
T. Massoud, V. Maurice, L.H. Klein, P. Marcus, J. Electrochem. Soc. 160(2013) C232-238.
DOI URL |
[15] |
T. Zhao, Z. Liu, X. Xu, Y. Li, C. Du, X. Liu, Corros. Sci. 157(2019) 146-156.
DOI URL |
[16] | M.C. Cao, J.W. Yeh, P.K. Liaw, Y. Zhang (Eds.), High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, Cham, Switzerland, 2016. |
[17] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61(2014) 1-93. |
[18] | Y.Y. Chen, T. Duval, U.T. Hong, J.W. Yeh, H.C. Shih, L.H. Wang, J.C. Oung, Mater. Lett. 61(2007) 2692-2696. |
[19] | H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corros. Sci. 134(2018) 131-139. |
[20] |
Y. Hsu, W. Chiang, J. Wu, Mater. Chem. Phys. 92(2005) 112-117.
DOI URL |
[21] | Y.L. Chou, J.W. Yeh, H.C. Shih, Corros. Sci. 52(2010) 2571-2581. |
[22] | C. Shang, E. Axinte, J. Sun, X. Li, P. Li, J. Du, P. Qiao, Y. Wang, Mater. Des. 117(2017) 193-202. |
[23] | M. Kaneko, H.S. Isaacs, Corros. Sci. 44(2002) 1825-1834. |
[24] |
H. Tian, X. Cheng, Y. Wang, C. Dong, X. Li, Electrochim. Acta 267 (2018) 255-268.
DOI URL |
[25] |
J. Lee, Mater. Chem. Phys. 99(2006) 224-234.
DOI URL |
[26] |
A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50(2008) 1796-1806.
DOI URL |
[27] | J.N. Wanklyn, Corros. Sci. 21(1981) 211-225. |
[28] | K. Sugimoto, Y. Sawada, Corros. Sci. 32(1976) 2940-2947. |
[29] |
C.R. Clayton, J. Electrochem. Soc. 133(1986) 2465-2473.
DOI URL |
[30] | J. Anburaj, S.S.M. Nazirudeen, R. Narayanan, B. Anandavel, A. Chandrasekar, Mater. Sci. Eng. A 535 (2012) 99-107. |
[31] |
Y. Hao, G. Cao, C. Li, J. Li, W. Liu, W. Zhang, Z. Liu, Mater. Charact. 147(2019) 21-30.
DOI URL |
[32] | M.E. Wilma, V.J. Gadgil, J.M. Krougman, F.P. Ijsseling, Corros. Sci. 36(2010) 871-881. |
[33] |
H.M. Ezuber, A. El-Houd, F. El-Shawesh, Desalination 207 (2007) 268-275.
DOI URL |
[34] |
Y. Kim, S. Kim, H. Kim, C. Park, Y. Choi, C. Park, Corros. Sci. 152(2019) 202-210.
DOI URL |
[35] | B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127(2017) 471-480. |
[36] | M. Zhang, W. Zhang, Y. Liu, B. Liu, J. Wang, Powder Metall. 61(2018) 123-130. |
[37] |
T. Shun, L. Chang, M. Shiu, Mater. Charact. 70(2012) 63-67.
DOI URL |
[38] | W.Q. Wu, L. Guo, B. Liu, S. Ni, Y. Liu, M. Song, Philos. Mag. Abingdon (Abingdon) 97(2017) 3229-3245. |
[39] | W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116(2016) 332-342. |
[40] |
W.P. Li, X.G. Wang, B. Liu, Q.H. Fang, C. Jiang, Mater. Sci. Eng. A 723 (2018) 79-88.
DOI URL |
[41] |
X. Shang, Z. Wang, Q. Wu, J. Wang, J. Li, J. Yu, Acta Metall. Sin. (Engl. Lett.) 32(2019) 41-51.
DOI URL |
[42] |
S.V. Muley, A.N. Vidvans, G.P. Chaudhari, S. Udainiya, Acta Biomater. 30(2016) 408-419.
DOI URL |
[43] | L.Q. Guo, Y. Bai, B.Z. Xu, W. Pan, J.X. Li, L.J. Qiao, Corros. Sci. 70(2013) 140-144. |
[44] |
A. Rossi, B. Elsener, G. Hahner, M. Textor, N.D. Spencer, Surf. Interface Anal. 29(2000) 460-467.
DOI URL |
[45] | G.S. Frankel, J. Electrochem. Soc. 145(1998) 2186-2198. |
[46] | T. Shun, L. Chang, M. Shiu, Mater. Charact. 81(2013) 92-96. |
[47] | G.O. Ilevbare, G.T. Burstein, Corros. Sci. 45(2003) 1545-1569. |
[48] | L. Jinlong, L. Tongxiang, W. Chen, Mater. Lett. 171(2016) 38-41. |
[49] | W.J. Tobler, S. Virtanen, Corros. Sci. 48(2006) 1585-1607. |
[50] | R. Qvarfort, Corros. Sci. 40(1998) 215-223. |
[51] | T. Yamamoto, K. Fushimi, M. Seo, S. Tsuri, T. Adachi, H. Habazaki, Corros. Sci. 51(2009) 1545-1553. |
[52] |
K. Chandra, R. Singhal, V. Kain, V.S. Raja, Mater. Sci. Eng. A 527 (2010) 3904-3912.
DOI URL |
[53] | Y. Wang, X. Cheng, X. Li, Electrochem. commun. 57(2015) 56-60. |
[54] | J. Yao, D.D. Macdonald, C. Dong, Corros. Sci. 146(2019) 221-232. |
[55] |
L. Wang, C. Dong, J. Yao, Z. Dai, C. Man, Y. Yin, K. Xiao, X. Li, Corros. Sci. 154(2019) 178-190.
DOI URL |
[56] |
H. Luo, S. Gao, C. Dong, X. Li, Electrochim. Acta 135 (2014) 412-419.
DOI URL |
[57] |
I. Olefjord, L. Wegrelius, Corros. Sci. 38(1996) 1203-1220.
DOI URL |
[58] |
Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150(2019) 218-234.
DOI URL |
[59] | W.A. Badawy, F. M.Al-Kharafi, J.R. Al-Ajmi, J. Appl. Electrochem. 30(2000) 693-704. |
[60] | V. Maurice, H. Peng, L.H. Klein, A. Seyeux, S. Zanna, P. Marcus, Faraday Discuss. 18(2015) 117-151. |
[61] |
D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Electrochim. Acta 276 (2018) 293-303.
DOI URL |
[62] |
K. Hashimoto, K. Asami, K. Teramoto, Corros. Sci. 19(1979) 3-14.
DOI URL |
[63] |
A.C. Lloyd, J.J. Noël, S. McIntyre, D.W. Shoesmith, Electrochim. Acta 49 (2004) 3015-3027.
DOI URL |
[64] | Y.C. Lu, C.R. Clayton, A.R. Brooks, Corros. Sci. 29(1989) 863-880. |
[65] | K. Sugimoto, Y. Sawada, Corros. Sci. 17(1977) 425-445. |
[66] |
C.O.A. Olsson, Corros. Sci. 37(1995) 467-479.
DOI URL |
[67] | M. Vayer, I. Reynaud, R. Erre, J. Mater. Sci. 35(2000) 2581-2587. |
[68] | S. Yee, J. Electrochem. Soc. 138(1991) 55-61. |
[69] |
N. Sathirachinda, R. Pettersson, S. Wessman, J. Pan, Corros. Sci. 52(2010) 179-186.
DOI URL |
[70] | T. Zhao, Z. Liu, C. Du, C. Dai, X. Li, B. Zhang, Mater. Sci. Eng. A 708 (2017) 181-192. |
[71] |
N. Sathirachinda, R. Pettersson, J. Pan, Corros. Sci. 51(2009) 1850-1860.
DOI URL |
[72] | Y. Shi, L. Collins, N. Balke, P.K. Liaw, B. Yang, Appl. Surf. Sci. 439(2018) 533-544. |
[73] |
R.A. Perren, T. Suter, C. Solenthaler, G. Gullo, P.J. Uggowitzer, H. Bohni, M.O. Speidel, Corros. Sci. 43(2001) 727-745.
DOI URL |
[1] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[2] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[3] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[4] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[5] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[6] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[7] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[8] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[9] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[10] | N.N. Jiao, Y.X. Lai, S.L. Chen, P. Gao, J.H. Chen. Atomic-scale roles of Zn element in age-hardened AlMgSiZn alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 105-112. |
[11] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[12] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[13] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[14] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[15] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||