J. Mater. Sci. Technol. ›› 2021, Vol. 71: 169-176.DOI: 10.1016/j.jmst.2020.08.044
• Research Article • Previous Articles Next Articles
Peng Penga,b,*(), Jinmian Yuea,b, Anqiao Zhanga,b, Xudong Zhanga,b, Yuanli Xua,b
Received:
2020-04-10
Revised:
2020-06-03
Accepted:
2020-06-16
Published:
2021-04-30
Online:
2021-04-30
Contact:
Peng Peng
About author:
* E-mail address: pengp@lzu.edu.cn (P. Peng).Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient[J]. J. Mater. Sci. Technol., 2021, 71: 169-176.
Fig. 1. Experimental procedures in this study: (a) illustration of the Bridgman-type directional solidification equipment and (b) the measurement of SV in the transverse sections of a rod.
Fig. 2. Typical microstructures of the dendritic morphology in Sn-36at.%Ni: 5 μm/s (a), (d); 20 μm/s: (b), (e); 40 μm/s: (c), (f). (a)-(c) shows the microstructure at the solid/liquid interface and (d)-(f) shows that at the peritectic interface.
Fig. 3. Dependence of transversal microstructures of the dendritic morphology in Sn-36 at.%Ni at the growth velocity of 5 μm/s: (a) the positions and corresponding temperatures of these transversal microstructures; (b)-(e) shows the microstructures at different transversal sections, which correspond to TI, TII, TIII, TIV, respectively.
Fig. 4. Illustration of the comparison between the TGZM and G-T effects on their influences on remelting/resolidification process in stage I during directional solidification of peritectic alloy.
Fig. 5. Illustration of the comparison between the TGZM and G-T effects on their influences on remelting/resolidification process in stage II during directional solidification of peritectic alloy.
Fig. 6. Illustration of the comparison between the TGZM and G-T effects on their influences on remelting/resolidification process in stage III during directional solidification of peritectic alloy.
Fig. 7. Illustration of the comparison between the TGZM and G-T effects on their influences on relting/resolidification process in stage IV during directional solidification of peritectic alloy.
Fig. 9. Comparison between the theoretical prediction and experimental results of permeability K in directionally solidified Sn-36at.%Ni peritectic alloy at different growth velocities when the TGZM effect is not taken into consideration: (a) 5 μm/s, (b) 10 μm/s, (c) 20 μm/s and (d) 40 μm/s.
Fig. 10. Comparison between the theoretical prediction and experimental results of permeability K in directionally solidified Sn-36at.%Ni peritectic alloy at different growth velocities when the TGZM effect is taken into consideration: (a) 5 μm/s, (b) 10 μm/s, (c) 20 μm/s and (d) 40 μm/s.
[1] |
S.P. Marsh, M.E. Glicksman, Metall. Mater. Trans. A 27 (1996) 557-567.
DOI URL |
[2] |
H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 38 (2020) 19-27.
DOI URL |
[3] |
E. Çadırlı, M. Gündüz, J. Mater. Sci. 35 (2000) 3837-3848.
DOI URL |
[4] |
H. Dong, Y.Z. Chen, K. Wang, G.B. Shan, Z.R. Zhang, K. Huang, F. Liu, Scr. Mater. 177 (2020) 123-127.
DOI URL |
[5] |
Y.B. Zhang, J.L. Du, K. Wang, H.Y. Wang, S. Li, F. Liu, J. Mater. Sci. Technol. 44 (2020) 209-222.
DOI URL |
[6] |
K.L. Zhang, Y.J. Li, Y.S. Yang, J. Mater. Sci. Technol. 48 (2020) 9-17.
DOI URL |
[7] | J.C. Coughlin, T.Z. Kattamis, M.C. Flemings, Trans. AIME 239 (1967) 1504-1511. |
[8] |
D. Ma, W. Xu, S.C. Ng, Y. Li, Mater. Sci. Eng. A 390 (2005) 52-62.
DOI URL |
[9] |
R.G. Santos, M.L.N.M. Melo, Mater. Sci. Eng. A 391 (2005) 151-158.
DOI URL |
[10] |
J. Madison, J. Spowart, D. Rowenhorst, L.K. Aagesen, K. Thornton, T.M. Pollock, Acta Mater. 58 (2010) 2864-2875.
DOI URL |
[11] |
M.L.N.M. Melo, E.M.S. Rizzo, R.G. Santos, Mater. Sci. Eng. A 374 (2004) 351-361.
DOI URL |
[12] |
X. Zhang, J. Kang, Z. Guo, Q. Han, Inter. J. Heat Mass Trans. 131 (2019) 196-205.
DOI URL |
[13] |
D.K. Sun, H. Xing, X.L. Dong, Y.S. Han, Inter. J. Heat Mass Trans. 133 (2019) 1240-1250.
DOI URL |
[14] | D. Nagelhout, M.S. Bhat, J.C. Heinrich, D.R. Poirier, Mater. Sci. Eng. A 91 (1995) 203-208. |
[15] |
E. Khajeh, D.M. Maijer, Acta Mater. 59 (2011) 4511-4524.
DOI URL |
[16] |
S.G.R. Brown, J.A. Spittle, D.J. Jarvis, R. Walden-Bevan, Acta Mater. 50 (2002) 1559-1569.
DOI URL |
[17] |
H. Chen, Z.F. Zhao, H.M. Xiang, F.Z. Dai, J. Zhang, S.G. Wang, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 38 (2020) 80-85.
DOI URL |
[18] | B. Yang, Z.F. Wang, Inter. J. Heat Mass Trans. 147 (2020) 119234-1-119234-9. |
[19] | T.Z. Kattamis, M.C. Flemings, Trans. Metall. Soc. AIME 233 (1965) 992-999. |
[20] |
B.W. Zhang, Y. Lei, B.F. Bai, T.S. Zhao, Inter. J. Heat Mass Trans. 135 (2019) 460-469.
DOI URL |
[21] |
M. Rettenmayr, Inter. Mater. Rev. 54 (2009) 1-17.
DOI URL |
[22] | W.G. Pfann, Trans. AIME 203 (1955) 961-964. |
[23] |
D.J. Allen, J.D. Hunt, Metall. Mater. Trans. A 7 (1976) 767-770.
DOI URL |
[24] |
D.M. Liu, X.Z. Li, Y.Q. Su, P. Peng, L.S. Luo, J.J. Guo, H.Z. Fu, Acta Mater. 60 (2012) 2679-2688.
DOI URL |
[25] |
A.B. Phillion, M. Zaloˇznik, I. Spindler, N. Pinter, C.A. Aledo, G. Salloum-Abou-Jaoude, H. Nguyen, Acta Mater. 141 (2017) 206-216.
DOI URL |
[26] |
S.Y. Pan, Q.Y. Zhang, M.F. Zhu, M. Rettenmayr, Acta Mater. 86 (2015) 229-239.
DOI URL |
[27] |
H. Nguyen Thi, G. Reinhart, A. Buffet, T. Schenkd, N. Angelinck-Noël, H. Jung, N. Bergeon, B. Billia, J. Härtwig, J. Baruchel, J. Cryst. Growth 310 (2008) 2906-2914.
DOI URL |
[28] |
H.W. Kerr, W. Kurz, Inter. Mater. Rev. 41 (1996) 129-164.
DOI URL |
[29] |
M. Vandyoussefi, H.W. Kerr, W. Kurz, Acta Mater. 48 (2000) 2297-2306.
DOI URL |
[30] |
T. Umeda, T. Okane, W. Kurz, Acta Mater. 44 (1996) 4209-4216.
DOI URL |
[31] |
P. Peng, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Inter. J. Heat Mass Trans. 94 (2016) 488-497.
DOI URL |
[32] |
P. Peng, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Inter. J. Heat Mass Trans. 131 (2019) 1129-1137.
DOI URL |
[33] |
C. Schmetterer, H. Flandorfer, W.K. Richter, U. Saeed, M. Kauffman, P. Roussel, H. Ipser, Intermetallics 15 (2007) 869-884.
DOI URL |
[34] | H.D. Brody, M.C. Flemings, Trans. AIME 236 (1966) 615-624. |
[35] | P. Peng, J.M. Yue, A.Q. Zhang, X.D. Zhang, Y.L. Xu, J. Mater. Sci. Technol. 38(2020). |
[36] | P. Peng, X.Z. Li, D.M. Liu, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Mater, Sci. 47 (2012) 6108-6117. |
[1] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[2] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[3] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[4] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[5] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[6] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[7] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[8] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[9] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[10] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
[11] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[12] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[13] | Rui Jiang, Shengnan Qian, Chuang Dong, Ying Qin, Yujuan Wu, Jianxin Zou, Xiaoqin Zeng. Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution [J]. J. Mater. Sci. Technol., 2021, 72(0): 104-113. |
[14] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[15] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||