J. Mater. Sci. Technol. ›› 2021, Vol. 71: 163-168.DOI: 10.1016/j.jmst.2020.07.034
• Research Article • Previous Articles Next Articles
Xiangguang Konga, Ying Yanga,**(), Shiyu Guoa, Ran Lic, Bo Fenga, Daqiang Jianga, Meng Lid, Changfeng Chenb, Lishan Cuia, Shijie Haoa,b,*(
)
Received:
2020-05-31
Revised:
2020-06-23
Accepted:
2020-07-05
Published:
2021-04-30
Online:
2021-04-30
Contact:
Ying Yang,Shijie Hao
About author:
** E-mail addresses: yyang@cup.edu.cn (Y. Yang).Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning[J]. J. Mater. Sci. Technol., 2021, 71: 163-168.
Fig. 1. Macro and micro morphologies of the as-spun Ni50Ti50 ribbons. (a) optical image of the ribbons; (b) schematic of the ribbon; (c, d) TEM bright-field micrographs of the free surface and the copper roller surface, respectively; (e) SEM micrograph of the cross section of the etched NiTi ribbon; (f) line and map scanning micrographs of the chemical composition of the cross section.
Fig. 2. Micro-morphologies of the annealed ribbon and comparison of phase transformation and mechanical behaviors between the as-spun and annealed ribbons. (a, b) TEM bright-field micrographs of the free surface and the copper roller surface of the annealed ribbon, respectively; (e) SEM micrograph of the cross section of the annealed ribbon after etching; (d) DSC curves (P1 represents peak 1 and so on), (e) XRD patterns and (f) tensile stress-strain curves.
Fig. 3. Phase transformation behaviors of the annealed ribbons after tensile deformation with different strains. (a) DSC curves (M1 and M2 represent the first and second martensitic transformation peaks); (b) evolutions of As, Af, Ms, Mf, M1P, M2P as a function of the deformation strains.
Fig. 4. Optical images showing shape evolution of 7% tensile deformed NiTi ribbons upon (a) heating and (b) cooling. RS and FS denote copper roller surface and free surface, respectively.
Fig. 6. Effect of temperature on the evolutions of curvature upon the 1 st and 2nd thermal cycles of (a) 3%, (b) 5% and (c) 7% tensile deformed NiTi ribbons, respectively.
[1] |
W. Huang, Mater. Des. 23 (2002) 11-19.
DOI URL |
[2] |
J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. 56 (2014) 1078-1113.
DOI URL |
[3] | J. Van Humbeeck, Mater. Sci. Eng. A 273 (1999) 134-148. |
[4] | J. Liu, Z. Ouyang, S. Lu, J. Hou, Y. Huang, in: Zhang Lin, Hongying Hu, Yajun Zhang, Jianguo Qiao, Jiamin Xu (Eds.), Appl. Mech. Mater, Trans Tech Publications, Ltd., 2014, pp. 687-691. |
[5] |
Z. Xiong, Z. Li, Z. Sun, S. Hao, Y. Yang, M. Li, C. Song, P. Qiu, L. Cui, J. Mater. Sci. Technol. 35 (2019) 2238-2242.
DOI URL |
[6] |
H. Jiang, S. Cao, C. Ke, X. Ma, X. Zhang, J. Mater. Sci. Technol. 29 (2013) 855-862.
DOI URL |
[7] |
K. Otsuka, X. Ren, Prog. Mater. Sci. 50 (2005) 511-678.
DOI URL |
[8] | C. Wayman, MRS Bull. 18 (1993) 49-56. |
[9] | K. Tsuchiya, Shape Mem. Superelastic Alloy. (2011) 3-14. |
[10] | S.S. Cheng, J.P. Desai, in: Int. Conf. Robot. Autom., 2015, pp. 2580-2585. |
[11] | H. Morawiec, J. Lela, D. Stro, M. Gigla, Mater. Sci. Eng. A 273 (1999) 708-712. |
[12] | Q. Meng, Z. Wu, R. Bakhtiari, B.S. Shariat, H. Yang, Y. Liu, T. hyun Nam, Scr.Mater. 127 (2017) 84-87. |
[13] |
Q. Meng, Y. Liu, H. Yang, T.H. Nam, Scr. Mater. 65 (2011) 1109-1112.
DOI URL |
[14] |
A.S. Mahmud, Y. Liu, T.H. Nam, Smart Mater. Struct. 17 (2008), 015031.
DOI URL |
[15] |
T.H. Nam, J.H. Kim, T.Y. Kim, Y.K. Lee, Y.W. Kim, J. Mater. Sci. Lett. 21 (2002) 1851-1853.
DOI URL |
[16] | K. Furuya, Y. Matsumoto, M. Kimura, H. Aoki, Mater. Trans. 31 (1990) 504-508. |
[17] |
R. Santamarta, D. Schryvers, Scr. Mater. 50 (2004) 1423-1427.
DOI URL |
[18] |
H. Rösner, A.V. Shelyakov, A.M. Glezer, P. Schloßmacher, Mater. Sci. Eng. A 307 (2001) 188-189.
DOI URL |
[19] | H. Rösner, A.V. Shelyakov, A.M. Glezer, K. Feit, P. Schloßmacher, Mater. Sci. Eng.A 273-275 (1999) 733-737. |
[20] |
K.N. Lin, S.K. Wu, J. Alloys. Compd. 424 (2006) 171-175.
DOI URL |
[21] |
R. Santamarta, A. Pasko, J. Pons, E. Cesari, P. Ochin, Mater. Trans. 45 (2004) 1811-1818.
DOI URL |
[22] |
Y. Liu, J. Il Kim, S. Miyazaki, Philos. Mag. 84 (2004) 2083-2102.
DOI URL |
[23] |
X. Shi, L. Cui, D. Jiang, C. Yu, F. Guo, M. Yu, Y. Ren, Y. Liu, J. Mater. Sci. 49 (2014) 4643-4647.
DOI URL |
[24] |
J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Acta Mater. 58 (2010) 3444-3458.
DOI URL |
[25] | H. Morawiec, D. Stróz, D. Chrobak, Le J. Phys. IV 05 (1995), C2-205-C2-210. |
[26] |
H. Morawiec, D. Strószlig, T. Goryczka, D. Chrobak, Scr. Mater. 35 (1996) 485-490.
DOI URL |
[27] |
Y.Y. Li, X.Y. Yao, S.S. Cao, X. Ma, C.B. Ke, X.P. Zhang, Mater. Des. 118 (2017) 99-106.
DOI URL |
[28] |
Y.X. Tong, K.P. Hu, F. Chen, B. Tian, L. Li, Y.F. Zheng, Intermetallics 85 (2017) 163-169.
DOI URL |
[29] |
S.H. Chang, S.K. Wu, G.H. Chang, Scr. Mater. 52 (2005) 1341-1346.
DOI URL |
[30] |
A. Shuitcev, D.V. Gunderov, B. Sun, L. Li, R.Z. Valiev, Y.X. Tong, J. Mater. Sci. Technol. 52 (2020) 218-225.
DOI URL |
[31] |
G. Tan, Y. Liu, P. Sittner, M. Saunders, Scr. Mater. 50 (2004) 193-198.
DOI URL |
[32] |
T. Waitz, T. Antretter, F.D. Fischer, H.P. Karnthaler, Mater. Sci. Technol. 24 (2008) 934-940.
DOI URL |
[33] | Y. Liu, Y. Liu, J. Van Humbeeck, Acta Mater. 47 (1998) 199-209. |
[34] |
Y. Liu, D. Favier, Acta Mater. 48 (2000) 3489-3499.
DOI URL |
[35] | Y. Liu, Z. Xie, Detwinning in shape memory alloy, in: Chapter in Progress in Smart Materials and Structures Research, Nova Science Publishers, Inc., 2006, ISBN 1-60021-106-2. |
[36] |
Z. Chen, D. Cong, Y. Zhang, X. Sun, R. Li, S. Li, Z. Yang, C. Song, Y. Cao, Y. Ren, Y. Wang, J. Mater. Sci. Technol. 45 (2020) 44-48.
DOI URL |
[1] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[2] | Longyan Hou, Yiyong Wu, Debin Shan, Bin Guo, Yingying Zong. Dose rate effects on shape memory epoxy resin during 1 MeV electron irradiation in air [J]. J. Mater. Sci. Technol., 2021, 67(0): 61-69. |
[3] | Kai Liu, Hai Zeng, Ji Qi, Xiaohua Luo, Xuanwei Zhao, Xianming Zheng, Yuan Yuan, Changcai Chen, Shengcan Ma, Ren Xie, Bing Li, Zhenchen Zhong. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 76-82. |
[4] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[5] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[6] | Edward Charles Henry Crawford O’ Brien, Hemantha Kumar Yeddu. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears [J]. J. Mater. Sci. Technol., 2020, 49(0): 157-165. |
[7] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[8] | Kai Liu, Shengcan Ma, Yuxi Zhang, Hai Zeng, Guang Yu, Xiaohua Luo, Changcai Chen, Sajjad Ur Rehman, Yongfeng Hu, Zhenchen Zhong. Magnetic-field-driven reverse martensitic transformation with multiple magneto-responsive effects by manipulating magnetic ordering in Fe-doped Co-V-Ga Heusler alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 145-154. |
[9] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[10] | Shuiyuan Yang, Lipeng Guo, Xinyu Qing, Shen Hong, Jixun Zhang, Mingpei Li, Cuiping Wang, Xingjun Liu. Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal [J]. J. Mater. Sci. Technol., 2020, 57(0): 43-50. |
[11] | Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire [J]. J. Mater. Sci. Technol., 2020, 45(0): 44-48. |
[12] | Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements [J]. J. Mater. Sci. Technol., 2020, 42(0): 113-121. |
[13] | Yanghuan Zhang, Pengpeng Wang, Zhonghui Hou, Zeming Yuan, Yan Qi, Shihai Guo. Structure and hydrogen storage characteristics of as-spun Mg-Y-Ni-Cu alloys [J]. J. Mater. Sci. Technol., 2019, 35(8): 1727-1734. |
[14] | Zhiwei Xiong, Zhonghan Li, Zhen Sun, Shijie Hao, Ying Yang, Meng Li, Changhui Song, Ping Qiu, Lishan Cui. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect [J]. J. Mater. Sci. Technol., 2019, 35(10): 2238-2242. |
[15] | Yanghuan Zhang, Songsong Cui, Yaqin Li, Hongwei Shang, Yan Qi, Dongliang Zhao. Structures and electrochemical performances of as-spun RE-Mg-Ni-Co-Al alloys applied to Ni-MH battery [J]. J. Mater. Sci. Technol., 2018, 34(2): 370-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||