J. Mater. Sci. Technol. ›› 2020, Vol. 44: 31-41.DOI: 10.1016/j.jmst.2020.01.034
• Research Article • Previous Articles Next Articles
Xinzeng Lianga, Jing Baiabc**(), Jianglong Gud, Haile Yana, Yudong Zhange, Claude Eslinge, Xiang Zhaoa*(
), Liang Zuoa
Received:
2019-10-09
Revised:
2019-11-15
Accepted:
2019-11-29
Published:
2020-05-01
Online:
2020-05-21
Contact:
Jing Bai,Xiang Zhao
Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys[J]. J. Mater. Sci. Technol., 2020, 44: 31-41.
Co0 | Co1 | Co2 | Co3 | Co4 | Co5 | Co6 | ||
---|---|---|---|---|---|---|---|---|
Ni2-xMn1.5In0.5Cox | x = 0 | - | x = 0.833 | - | x = 0.167 | - | x = 0.25 | x = 0.33 |
Ni50-yMn37.5In12.5Coy (at.%) | y = 0 | y = 1.04 | y = 2.08 | y = 3.13 | y = 4.17 | y = 5.21 | y = 6.25 | y = 8.33 |
Table 1 Correspondence between computational and experimental components.
Co0 | Co1 | Co2 | Co3 | Co4 | Co5 | Co6 | ||
---|---|---|---|---|---|---|---|---|
Ni2-xMn1.5In0.5Cox | x = 0 | - | x = 0.833 | - | x = 0.167 | - | x = 0.25 | x = 0.33 |
Ni50-yMn37.5In12.5Coy (at.%) | y = 0 | y = 1.04 | y = 2.08 | y = 3.13 | y = 4.17 | y = 5.21 | y = 6.25 | y = 8.33 |
Co content (x) | A | 6 M | NM | ||||
---|---|---|---|---|---|---|---|
a = b = c | a | b | c | β° | a = b | c | |
x = 0 | 5.947, 5.95 [ | 4.439 | 5.429 | 12.85 | 95.26 | 3.7892 | 7.118 |
x = 0.08 | 5.944 | 4.413 | 5.443 | 12.90 | 94.30 | 3.7896 | 7.103 |
x = 0.17 | 5.941 | 4.394 | 5.458 | 12.89 | 94.36 | 3.7961 | 7.084 |
x = 0.25 | 5.937, 5.95 [ | 4.240 | 5.828 | 12.68 | 90.83 | 3.7965 | 7.052 |
x = 0.33 | 5.932 | 4.238 | 5.840 | 12.66 | 90.91 | 4.2035 | 5.898 |
Table 2 Optimized equilibrium lattice parameters (?) of A, 6 M and NM phases for Ni2-xMn1.5In0.5Cox (x = 0-0.33) alloys (Black italic meaning ferromagnetic state).
Co content (x) | A | 6 M | NM | ||||
---|---|---|---|---|---|---|---|
a = b = c | a | b | c | β° | a = b | c | |
x = 0 | 5.947, 5.95 [ | 4.439 | 5.429 | 12.85 | 95.26 | 3.7892 | 7.118 |
x = 0.08 | 5.944 | 4.413 | 5.443 | 12.90 | 94.30 | 3.7896 | 7.103 |
x = 0.17 | 5.941 | 4.394 | 5.458 | 12.89 | 94.36 | 3.7961 | 7.084 |
x = 0.25 | 5.937, 5.95 [ | 4.240 | 5.828 | 12.68 | 90.83 | 3.7965 | 7.052 |
x = 0.33 | 5.932 | 4.238 | 5.840 | 12.66 | 90.91 | 4.2035 | 5.898 |
Fig. 3. (a) Composition dependence of formation energies Ni2-xMn1.5In0.5Cox (x = 0-0.33) alloys. (b) Composition dependence of ΔE and TM for Ni2-xMn1.5In0.5Cox (x = 0-0.33) alloys.
System | B (GPa) | G (GPa) | Y (GPa) | Cp (GPa) | υ |
---|---|---|---|---|---|
Ni2MnIn | 138.81 | 43.82 | 118.94 | 36.81 | 0.357 |
Theo. | 127a [ | ||||
Exp. | 116c [ | ||||
Ni2Mn1.5In0.5 | 134.34, 137.4e [ | 43.14 | 116.90 | 31.78 | 0.355 |
Ni1.75Mn1.5In0.5Co0.25 | 134.9, 139.6 [ | 53.99 | 142.90 | 15.7 | 0.323 |
Ni1.5Mn1.5In0.5Co0.5 | 143.78, 142.7 [ | 59.40 | 156.63 | 17.54 | 0.318 |
Table 3 Calculated, experimental, and other theoretical values of the elastic constants in cubic Ni-Mn-In (Co) alloys.
System | B (GPa) | G (GPa) | Y (GPa) | Cp (GPa) | υ |
---|---|---|---|---|---|
Ni2MnIn | 138.81 | 43.82 | 118.94 | 36.81 | 0.357 |
Theo. | 127a [ | ||||
Exp. | 116c [ | ||||
Ni2Mn1.5In0.5 | 134.34, 137.4e [ | 43.14 | 116.90 | 31.78 | 0.355 |
Ni1.75Mn1.5In0.5Co0.25 | 134.9, 139.6 [ | 53.99 | 142.90 | 15.7 | 0.323 |
Ni1.5Mn1.5In0.5Co0.5 | 143.78, 142.7 [ | 59.40 | 156.63 | 17.54 | 0.318 |
Fig. 5. Three-dimensional surface plots of the single-crystal Young's moduli for ferromagnetic cubic Ni-Mn-In-Co alloys as a function of Co content for (a) x = 0, (b) x = 0.25, (c) x = 0.5.
Fig. 7. Atomic magnetic moments of (a) FA, (b) 6 M, (c) NM and the nearest neighbor atomic distance (d) as a function of Co content for Ni2-xMn1.5In0.5Cox (x = 0-0.33) alloys.
Fig. 8. The total density of states (DOS) (a), spin-down total density of states (b) near Fermi energy (EF) for Ni2-xMn1.5In0.5Cox (x = 0-0.33) alloys in FA, 6 M and NM phases. The zero energy is regarded as EF.
Nominal composition | Actual composition | |||
---|---|---|---|---|
Ni (at.%) | Mn (at.%) | In (at.%) | Co (at.%) | |
Ni50Mn37.5In12.5 | 49.7 | 37.5 | 12.8 | 0 |
Ni48.96Mn37.5In12.5Co1.04 | 48.9 | 36.9 | 12.9 | 1.3 |
Ni47.92Mn37.5In12.5Co2.08 | 48.1 | 37.0 | 12.8 | 2.1 |
Ni46.87Mn37.5In12.5Co3.13 | 46.7 | 37.3 | 12.7 | 3.3 |
Ni45.83Mn37.5In12.5Co4.17 | 45.7 | 37.1 | 12.9 | 4.3 |
Ni44.79Mn37.5In12.5Co5.21 | 44.7 | 37.2 | 12.8 | 5.3 |
Ni43.75Mn37.5In12.5Co6.25 | 44.0 | 37.1 | 12.8 | 6.1 |
Table 4 Composition for Ni50-yMn37.5In12.5Coy alloys.
Nominal composition | Actual composition | |||
---|---|---|---|---|
Ni (at.%) | Mn (at.%) | In (at.%) | Co (at.%) | |
Ni50Mn37.5In12.5 | 49.7 | 37.5 | 12.8 | 0 |
Ni48.96Mn37.5In12.5Co1.04 | 48.9 | 36.9 | 12.9 | 1.3 |
Ni47.92Mn37.5In12.5Co2.08 | 48.1 | 37.0 | 12.8 | 2.1 |
Ni46.87Mn37.5In12.5Co3.13 | 46.7 | 37.3 | 12.7 | 3.3 |
Ni45.83Mn37.5In12.5Co4.17 | 45.7 | 37.1 | 12.9 | 4.3 |
Ni44.79Mn37.5In12.5Co5.21 | 44.7 | 37.2 | 12.8 | 5.3 |
Ni43.75Mn37.5In12.5Co6.25 | 44.0 | 37.1 | 12.8 | 6.1 |
Fig. 10. (a) Room-temperature XRD patterns for Ni50-yMn37.5In12.5Coy alloys. (b) The composition dependence of the experimental and theoretical lattice parameters (?) for FA with y = 0-8.33. (c) The composition dependence of the experimental and theoretical lattice parameters (?) for 6 M martensite with y = 0-8.33. (d) The composition dependence of the experimental and theoretical monoclinic angle (°) for 6 M martensite with y = 0-8.33.
Ms (K) | Mf (K) | As (K) | Af (K) | ΔT(K) | ΔH(J/g) | ΔS(J/K·kg) | |
---|---|---|---|---|---|---|---|
Ni50Mn37.5In12.5 | 408 | 417 | 416 | 426 | 8.5 | 21.7 | 51.5 |
Ni48.96Mn37.5In12.5Co1.04 | 401 | 411 | 413 | 423 | 12 | 21.2 | 50.7 |
Ni47.92Mn37.5In12.5Co2.08 | 393 | 404 | 406 | 416 | 12.5 | 20.7 | 50.4 |
Ni46.87Mn37.5In12.5Co3.13 | 385 | 394 | 397 | 406 | 12 | 20.6 | 51.3 |
Ni45.83Mn37.5In12.5Co4.17 | 375 | 384 | 389 | 400 | 15 | 19.5 | 49.4 |
Ni44.79Mn37.5In12.5Co5.21 | 365 | 354 | 372 | 388 | 20.5 | 15.9 | 41.8 |
Ni43.75Mn37.5In12.5Co6.25 | 335 | 309 | 339 | 361 | 28 | 5.2 | 14.9 |
Table 5 The martensitic and austenitic transformation starting, finishing temperatures (Ms, Mf, As, Af,), transformation hysteresis (ΔT), enthalpy change (ΔH) and entropy change (ΔS) of Ni50-yMn37.5In12.5Coy alloys.
Ms (K) | Mf (K) | As (K) | Af (K) | ΔT(K) | ΔH(J/g) | ΔS(J/K·kg) | |
---|---|---|---|---|---|---|---|
Ni50Mn37.5In12.5 | 408 | 417 | 416 | 426 | 8.5 | 21.7 | 51.5 |
Ni48.96Mn37.5In12.5Co1.04 | 401 | 411 | 413 | 423 | 12 | 21.2 | 50.7 |
Ni47.92Mn37.5In12.5Co2.08 | 393 | 404 | 406 | 416 | 12.5 | 20.7 | 50.4 |
Ni46.87Mn37.5In12.5Co3.13 | 385 | 394 | 397 | 406 | 12 | 20.6 | 51.3 |
Ni45.83Mn37.5In12.5Co4.17 | 375 | 384 | 389 | 400 | 15 | 19.5 | 49.4 |
Ni44.79Mn37.5In12.5Co5.21 | 365 | 354 | 372 | 388 | 20.5 | 15.9 | 41.8 |
Ni43.75Mn37.5In12.5Co6.25 | 335 | 309 | 339 | 361 | 28 | 5.2 | 14.9 |
Fig. 12. (a) DSC curves and (b) relationship between ln(β/T2) and 10000/T of the heating path at different heating rates of Ni50Mn37.5In12.5, Ni47.92Mn37.5In12.5Co2.08 and Ni45.83Mn37.5In12.5Co4.17 alloys. The heating rates from top to bottom are 3, 5, 7, 10, 12, 15, 20 K/min, respectively.
Fig. 13. (a) M(T) curves at 0.1 T for Ni45.83Mn37.5In12.5Co4.17, Ni44.79Mn37.5In12.5Co5.21 and Ni43.75Mn37.5In12.5Co6.25 alloys. (Inset) M(T) curves at 5 T for Ni43.75Mn37.5In12.5Co6.25 alloys. (b) M(H) curves at 5 K for Ni50-yMn37.5In12.5Coy alloys.
[1] |
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439 (2006) 957-960.
DOI URL PMID |
[2] | M. Khan, I. Dubenko, S. Stadler, J. Jung, S.S. Stoyko, A. Mar, A. Quetz, T. Samanta, N. Ali, K.H. Chow,Appl. Phys. Lett. 102(2013), 112402. |
[3] | R. Barman, S.K. Singh, D. Kaur, Curr. Appl. Phys. 14(2014) 1755-1759. |
[4] | J.L. Sa´nchez Llamazares, T. Sanchez, J.D. Santos, M.J. Pe´rez, M.L. Sanchez, B. Hernando,Appl. Phys. Lett. 92(2008), 012513. |
[5] | S.Y. Yang, C.P. Wang, Z. Shi, J.M. Wang, J.B. Zhang, Y.X. Huang, X.J. Liu, Mater. Sci. Eng. A 655 (2016) 204-211. |
[6] | D.Y. Cong, S. Roth, M. Po’tschke, C. Hu’rrich, L. Schultz,Appl. Phys. Lett. 97(2010), 021908. |
[7] | D.Y. Cong, S. Roth, L. Schultz, Acta Mater. 60(2012) 5335-5351. |
[8] | T. Gottschall, K.P. Skokov, B. Frincu, O. Gutfleisch,Appl. Phys. Lett. 106(2015), 021901. |
[9] | T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Ma˜nosa, A. Planes,Phys. Rev. B 73 (2006), 174413. |
[10] | Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85(2004) 4358-4360. |
[11] | K. Abematsu, R.Y. Umetsu, R. Kainuma, T. Kanomata, K. Watanabe, K. Koyama, Mater. Trans. 55(2014) 477-481. |
[12] | E.C. Do, Y.H. Shin, B.J. Lee, Calphad 32 (2008) 82-88. |
[13] | T. Mehaddene, J. Neuhaus, W. Petry, K. Hradil, P. Bourges, A. Hiess,Phys. Rev. B 78 (2008), 104110. |
[14] | Q.-M. Hu, C.-M. Li, R. Yang, S.E. Kulkova, D.I. Bazhanov, B. Johansson, L. Vitos,Phys. Rev. B 79 (2009), 144112. |
[15] | C.-M. Li, H.-B. Luo, Q.-M. Hu, R. Yang, B. Johansson, L. Vitos,Phys. Rev. B 84 (2011), 024206. |
[16] | H.-B. Luo, Q.-M. Hu, C.-M. Li, R. Yang,Phys. Rev. B 86 (2012), 024427. |
[17] | N. Lanska, O. Soderberg, A. Sozinov, Y. Ge, K. Ullakko, V.K.’ Lindroos, J. Appl. Phys. 95(2004) 8074-8078. |
[18] | S. Banik, R. Ranjan, A. Chakrabarti, S. Bhardwaj, N.P. Lalla, A.M. Awasthi, V. Sathe, D.M. Phase, P.K. Mukhopadhyay, D. Pandey, S.R. Barman,Phys. Rev. B 75 (2007), 104107. |
[19] | S. Ghosh, L. Vitos, B. Sanyal, Phys. B: Condens. Matter. 406(2011) 2240-2244. |
[20] | S.R. Barman, A. Chakrabarti, S. Singh, S. Banik, S. Bhardwaj, P.L. Paulose, B.A. Chalke, A.K. Panda, A. Mitra, A.M. Awasthi,Phys. Rev. B 78 (2008), 134406. |
[21] |
N. Xu, J.M. Raulot, Z.B. Li, Y.D. Zhang, J. Bai, W. Peng, X.Y. Meng, X. Zhao, L. Zuo, C. Esling, J. Alloys Comp. 614(2014) 126-130.
DOI URL |
[22] |
X.Z. Liang, J. Bai, J.L. Wang, Sf. Shi, H.L. Yan, J.L. Gu, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloys Comp. 804(2019) 111-118.
DOI URL |
[23] | K.R. Priolkar, P.A. Bhobe, D.N. Lobo, S.W. D’Souza, S.R. Barman, Aparna Chakrabarti, S. Emura,Phys. Rev. B 87 (2013), 144412. |
[24] |
S.W. D’Souza, A. Chakrabarti, S.R. Barman, J. Electron. Spectrosc. 208(2016) 33-39.
DOI URL |
[25] |
P. Borgohain, M.B. Sahariah,J. Phys. Condens. Matter. 27(2015), 175502.
DOI URL PMID |
[26] |
D. Comtesse, M.E. Gruner, M. Ogura, V.V. Sokolovskiy, V.D. Bucheln ikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottschall, O. Gutfleisch, V.A. Chernenko, F. Albertini, S. Fähler, P. Entel,Phys. Rev. B 89 (2014), 184403.
DOI URL |
[27] |
H. Yan, Y. Zhang, N. Xu, A. Senyshyn, H.G. Brokmeier, C. Esling, X. Zhao, L. Zuo, Acta Mater. 88(2015) 375-388.
DOI URL PMID |
[28] |
H. Xiao, C. Yang, R. Wang, L. Xu, G. Liu, V.V. Marchenkov, Phys. Lett. A 380 (2016) 3414-3420.
DOI URL |
[29] |
Z.N. Zhou, L. Yang, R.C. Li, J. Li, Q.D. Hu, J.G. Li, Intermetallics 92 (2018) 49-54.
DOI URL |
[30] |
J. Hafner, Acta Mater. 48(2000) 71-92.
DOI URL |
[31] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[32] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.
DOI URL PMID |
[33] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.
DOI URL PMID |
[34] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[35] | D.C. Wallace, New York, 1972. |
[36] |
S. Paul, S. Ghosh,J. Appl. Phys. 110(2011), 063523.
DOI URL |
[37] | P.R. Alonso, G.H. Rubiolo, Phys. Rev. B 62 (2000) 237-242. |
[38] |
W.Q. He, H.B. Huang, Z.H. Liu, X.Q. Ma, Intermetallics 90 (2017) 140-146.
DOI URL |
[39] |
C.-M. Li, H.-B. Luo, Q.-M. Hu, R. Yang, B. Johansson, L. Vitos,Phys. Rev. B 86 (2012), 214205.
DOI URL |
[40] |
A. Kundu, S. Ghosh, S. Ghosh,Phys. Rev. B 96 (2017), 174107.
DOI URL |
[41] |
A. Chakrabarti, M. Siewert, T. Roy, K. Mondal, A. Banerjee, M.E. Gruner, P. Entel,Phys. Rev. B 88 (2013), 174116.
DOI URL |
[42] |
Y.X. Ma, H.Y. Hao, X.T. Liu, H.Z. Luo, F.B. Meng, H.Y. Liu, Intermetallics 93 (2018) 263-268.
DOI URL |
[43] |
J. Bai, N. Xu, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo,J. Appl. Phys. 113(2013), 174901.
DOI URL |
[44] |
X. Moya, D. González-Alonso, L. Manosa, A. Planes,Phys. Rev. B 79 (2009), 214118.
DOI URL |
[45] | H.Z. Luo, G.D. Liu, Z.Q. Feng, Y.X. Li, L. Ma, G.H. Wu, X.X. Zhu, C.B. Jiang, H.B. Xu, J. Magn. Magn. Mater. 321(2009) 4063-4066. |
[46] | Z.G. Wu, Z.H. Liu, H. Yang, Y.N. Liu, G.H. Wu, Intermetallics 19 (2011) 1839-1848. |
[47] | D. Bourgault, J. Tillier, P. Courtois, D. Maillard, X. Chaud,Appl. Phys. Lett. 96(2010), 132501. |
[48] | F. Guillou, P. Courtois, L. Porcar, P. Plaindoux, D. Bourgault, V. Hardy,J. Phys. D Appl. Phys. 45(2012), 255001. |
[49] | P. Lázpita, J.M. Barandiarán, J. Gutiérrez, J. Feuchtwanger, V.A. Chernenko, M.L. Richard,New J. Phys. 13(2011), 033039. |
[50] | H.B. Xiao, C.P. Yang, R.L. Wang, V.V. Marchenkov, K. Bärner,J. Appl. Phys. 112(2012), 123723. |
[51] |
M. Ye, A. Kimura, Y. Miura, M. Shirai, Y.T. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, K. Kobayashi, R. Kainuma, T. Shishido, K. Fukushima, T. Kanomata,Phys. Rev. Lett. 104(2010), 176401.
DOI URL PMID |
[52] | J.C. Suits, Solid State Commun. 18(1976) 423-425. |
[53] |
Z.B. Li, W. Hu, F.H. Chen, M.G. Zhang, Z.Z. Li, B. Yang, X. Zhao, L. Zuo, J. Magn. Magn. Mater. 452(2018) 249-252.
DOI URL |
[54] | H.E. Kissinger, Anal. Chem. 29(1957) 1702-1706. |
[55] | H. Fang, B. Wong, Y. Bai, Constr. Build. Mater. 131(2017) 146-155. |
[1] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[2] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[3] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[4] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[5] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[6] | Kai Liu, Hai Zeng, Ji Qi, Xiaohua Luo, Xuanwei Zhao, Xianming Zheng, Yuan Yuan, Changcai Chen, Shengcan Ma, Ren Xie, Bing Li, Zhenchen Zhong. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 76-82. |
[7] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[8] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
[9] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[10] | Geng Liu, Zongbiao Dai, Zhigang Yang, Chi Zhang, Jun Li, Hao Chen. Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: Role of heating rate [J]. J. Mater. Sci. Technol., 2020, 49(0): 70-80. |
[11] | Edward Charles Henry Crawford O’ Brien, Hemantha Kumar Yeddu. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears [J]. J. Mater. Sci. Technol., 2020, 49(0): 157-165. |
[12] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[13] | Kai Liu, Shengcan Ma, Yuxi Zhang, Hai Zeng, Guang Yu, Xiaohua Luo, Changcai Chen, Sajjad Ur Rehman, Yongfeng Hu, Zhenchen Zhong. Magnetic-field-driven reverse martensitic transformation with multiple magneto-responsive effects by manipulating magnetic ordering in Fe-doped Co-V-Ga Heusler alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 145-154. |
[14] | Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43(0): 104-118. |
[15] | Di Zhang, Zhen Zhang, Yanlin Pan, Yanbin Jiang, Linzhong Zhuang, Jishan Zhang, Xinfang Zhang. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 132-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||