Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 70-80    DOI: 10.1016/j.jmst.2020.01.051
Research Article Current Issue | Archive | Adv Search |
Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: Role of heating rate
Geng Liua, Zongbiao Daia, Zhigang Yanga, Chi Zhanga, Jun Lib, Hao Chena,*()
a Key Laboratory for Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
b Research Institute of Baoshan Iron and Steel Co., Ltd, Shanghai, 201900, China
Download:  HTML  PDF(4983KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Austenite formation from a ferrite-cementite mixture is a crucial step during the processing of advanced high strength steels (AHSS). The ferrite-cementite mixture is usually inhomogeneous in both structure and composition, which makes the mechanism of austenite formation very complex. In this contribution, austenite formation upon continuous heating from a designed spheroidized cementite structure in a model Fe-C-Mn alloy was investigated with an emphasis on the role of heating rate in kinetic transitions and element partitioning during austenite formation. Based on partition/non-partition local equilibrium (PLE/NPLE) assumption, austenite growth was found alternately contribute by PLE, NPLE and PLE controlled interfaces migration during slow-heating, while NPLE mode predominately controlled the austenitization by a synchronous dissolution of ferrite and cementite upon fast-heating. It was both experimentally and theoretically found that there is a long-distance diffusion of Mn within austenite of the slow-heated sample, while a sharp Mn gradient was retained within austenite of the fast-heated sample. Such a strong heterogeneous distribution of Mn within austenite cause a large difference in driving force for ferrite or martensite formation during subsequent cooling process, which could lead to various final microstructures. The current study indicates that fast-heating could lead to unique microstructures which could hardly be obtained via the conventional annealing process.

Key words:  Cementite      Austenite      Kinetics      Elements partitioning      Fast heating     
Received:  26 November 2019     
Corresponding Authors:  Hao Chen     E-mail:  hao. chen@mail.tsinghua.edu.cn

Cite this article: 

Geng Liu, Zongbiao Dai, Zhigang Yang, Chi Zhang, Jun Li, Hao Chen. Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: Role of heating rate. J. Mater. Sci. Technol., 2020, 49(0): 70-80.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.01.051     OR     https://www.jmst.org/EN/Y2020/V49/I0/70

Fig. 1.  Sketch of pre-treatment process of the test sample.
Fig. 2.  Initial microstructures before austenitization: (a) Image quality maps with phase maps marking cementite in yellow; (b) orientation map; (c) SEM image showing the microstructure of one cementite particle in ferrite matrix; (d) Mn profile along the scanning line in Fig. 2(c); (e) Statistics of Mn content in cementite and its surrounding ferrite at a 20 × 20 um2 square in a SEM image.
Fig. 3.  Relative length changes of the specimens as a function of temperature: (a) continuous heating at 0.1 °C/s and 100 °C/s to fully austenitizing temperature; (b)continuous heating at 0.1 °C/s and quenched from 775 °C and 797 °C; (c) (b)continuous heating at 100 °C/s and quenched from 827 °C, 837 °C and 857 °C.
Fig. 4.  (a) Micrograph of the slow-heated sample quenched from 775 °C; (b) SEM image showing the diffusion field across one cementite particle; (c) Image quality map with phase maps marking retained austenite (RA) and cementite; (d) Crystal orientation imaging maps; (e)C and Mn profiles along the line in Fig. 4(b); (f) SEM image at higher voltage mode showing the distinguished contrast in the surrounding ferrite.
Fig. 5.  (a) Micrograph of the fast-heated sample quenched from 827 °C; (b) SEM image showing the diffusion field across one cementite particle; (c) Image quality maps with phase maps marking RA and cementite; (d) Crystal orientation imaging maps; (e)C and Mn profiles along the line in Fig. 5(b).
Fig. 6.  (a) Image quality map of multi-diffusion field with phase maps marking RA and cementite microstructure of fast-heated sample quenched at 827 °C; (b) Crystal orientation imaging map; (c) Mn profiles across the RA regions along the scanning line in Fig. 6(b).
Fig. 7.  (a-d) Image quality map with phase maps marking RA in green; (e-h) orientation maps of the corresponding region in which RA are highlighted in dark circle; (i-k) SEM pictures of single RA covered with the Mn profile.
Fig. 8.  Schematic isothermal sections of Fe-C-Mn phase diagrams to indicate the austenite growth under local equilibrium condition: (a) Mn diffusion-controlled austenite growth, e.g. Partitioning Local Equilibrium (PLE) (b) C diffusion-controlled austenite growth, e.g. Negligible Partitioning Local Equilibrium (NPLE) (PNTT: Partition to Non-partition Transition Temperature).
Fig. 9.  (a) Comparison between the kinetics of austenite formation upon heating simulated by DICTRA and measured by dilatation; (b) The γ/α and γ/θ interface position as a function of temperature upon heating with 0.1 °C/s and 100 °C/s.
Fig. 10.  (a, b) Evolution of C and Mn profiles during continuous heating at 0.1 °C /s; (c, d) Evolution of C and Mn profiles during continuous heating at 100 °C /s.
Fig. 11.  The predicted γ/α and γ/θ interface position as a function of temperature during heating and cooling and the corresponding elements distribution: (a-c) the slow-heated case, (d-f) the fast-heated case.
Fig. 12.  A sketch of the evolution of microstructure and Mn distribution during the thermal cycles.
[1] J. Huang, W.J. Poole, M. Militzer, Metall. Mater. Trans. A 35 (11) (2004) 3363-3375.
[2] R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, G.R. Purdy, Acta Mater. 61 (2) (2013) 697-707.
[3] S.S. Sohn, B.J. Lee, S. Lee, N.J. Kim, J.H. Kwak, Acta Mater. 61 (13) (2013) 5050-5066.
doi: 10.1016/j.actamat.2013.04.038
[4] X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Acta Mater. 154 (2018) 1-13.
doi: 10.1016/j.actamat.2018.05.035
[5] D.V. Shtansky, K. Nakai, Y. Ohmori, Acta Mater. 47 (9) (1999) 2619-2632.
[6] Z.D. Li, G. Miyamoto, Z.G. Yang, T. Furuhara, Metall. Mater. Trans. A 42 (6) (2010) 1586-1596.
doi: 10.1007/s11661-010-0560-4
[7] G.R. Speich, V.A. Demarest, R.L. Miller, Metall. Trans. A 12 (8) (1981) 1419-1428.
[8] Z. Li, Z. Wen, F. Su, R. Zhang, Z. Zhou, J. Alloys. Compd. 727 (2017) 1050-1056.
doi: 10.1016/j.jallcom.2017.07.111
[9] U.R. Lenel R.W.K. Honeycombe, Met. Sci. 18 (1984) 503-510.
[10] M. Hillert, K. Nilsson, L. Torndahl, J. Iron Steel Inst. 209 (1) (1971) 49-66.
[11] G. Miyamoto, H. Usuki, Z.D. Li, T. Furuhara, Acta Mater. 58 (13) (2010) 4492-4502.
doi: 10.1016/j.actamat.2010.04.045
[12] J. Emo, P. Maugis, A. Perlade, Comput. Mater. Sci. 125 (2016) 206-217.
doi: 10.1016/j.commatsci.2016.08.041
[13] Q. Lai, M. Gouné, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, Y. Bréchet, Metall. Mater. Trans. A 47 (7) (2016) 3375-3386.
[14] M. Enomoto, S. Li, Z.N. Yang, C. Zhang, Z.G. Yang, Calphad 61 (2018) 116-125.
[15] F. Huyan, J.Y. Yan, L. Höglund, J. Ågren, A. Borgenstam, Metall. Mater. Trans. A 49 (4) (2018) 1053-1060.
[16] C. Lesch, P. Álvarez, W. Bleck J. Gil Sevillano, Metall. Mater. Trans. A 38 (9) (2007) 1882-1890.
doi: 10.1007/s11661-006-9052-y
[17] T. Lolla, G. Cola, B. Narayanan, B. Alexandrov, S.S. Babu, Mater. Sci. Technol. 27 (5) (2013) 863-875.
doi: 10.1179/174328409X433813
[18] D. De Knijf, A. Puype, C. Föjer, R. Petrov, Mater. Sci. Eng., A 627 (2015) 182-190.
[19] F.C. Cerda, C. Goulas, I. Sabirov, S. Papaefthymiou, A. Monsalve, R.H. Petrov, Mater. Sci. Eng., A 672 (2016) 108-120.
[20] G. Liu, S. Zhang, J. Li, J. Wang, Q. Meng, Mater. Sci. Eng., A 669 (2016) 387-395.
doi: 10.1016/j.msea.2016.05.106
[21] W.W. Sun, Y.X. Wu, S.C. Yang, C.R. Hutchinson, Scripta Mater 146 (2018) 60-63.
[22] R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Acta Mater. 147 (2018) 59-69.
[23] G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, T. Maki, Acta Mater. 55 (15) (2007) 5027-5038.
[24] Y.X. Wu, W.W. Sun, M.J. Styles, A. Arlazarov, C.R. Hutchinson, Acta Mater. 159 (2018) 209-224.
doi: 10.1016/j.actamat.2018.08.023
[25] J. Park, M. Jung, Y.K. Lee, J. Magn, Magn. Mater. 377 (2015) 193-196.
doi: 10.1016/j.jmmm.2014.10.092
[26] Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 51 (2) (2003) 507-519.
doi: 10.1016/S1359-6454(02)00434-2
[27] H. Chen, B. Appolaire S. van der Zwaag, Acta Mater. 59 (17) (2011) 6751-6760.
doi: 10.1016/j.actamat.2011.07.033
[28] M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (15) (2011) 6059-6068.
doi: 10.1016/j.actamat.2011.06.014
[29] C. Cayron, J. Appl. Crystallogr. 40 (Pt 6) (2007) 1183-1188.
doi: 10.1107/S0021889807048777 pmid: 19461849
[30] G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Acta Mater. 58 (19) (2010) 6393-6403.
doi: 10.1016/j.actamat.2010.08.001
[31] M.J. Santofimia, L. Zhao, J. Sietsma, Metall. Mater. Trans. A 40 (1) (2008) 46-57.
doi: 10.1007/s11661-008-9701-4
[32] M. Belde, H. Springer, G. Inden, D. Raabe, Acta Mater. 86 (2015) 1-14.
doi: 10.1016/j.actamat.2014.11.025
[33] M. Belde, H. Springer, D. Raabe, Acta Mater. 113 (2016) 19-31.
doi: 10.1016/j.actamat.2016.04.051
[34] Y. Xia, M. Enomoto, Z. Yang, Z. Li, C. Zhang, Philos. Mag. 93 (9) (2013) 1095-1109.
doi: 10.1080/14786435.2012.744484
[35] Z.N. Yang, Y. Xia, M. Enomoto, C. Zhang, Z.G. Yang, Metall. Mater. Trans. A 47 (3) (2015) 1019-1027.
doi: 10.1007/s11661-015-3272-y
[36] J. Zhu, H. Luo, Z. Yang, C. Zhang, S. van der Zwaag, H. Chen, Acta Mater. 133 (2017) 258-268.
doi: 10.1016/j.actamat.2017.05.045
[37] H. Chen, M. Gounê S.V.D. Zwaag, Comput. Mater. Sci. 55 (2012) 34-43.
doi: 10.1016/j.commatsci.2011.12.002
[1] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[2] Gang Lu, Shuai Nie, Jianjun Wang, Ying Zhang, Tianhai Wu, Yujie Liu, Chunming Liu. Enhancing the bake-hardening responses of a pre-aged Al-Mg-Si alloy by trace Sn additions[J]. 材料科学与技术, 2020, 40(0): 107-112.
[3] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. 材料科学与技术, 2020, 48(0): 123-129.
[4] Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy[J]. 材料科学与技术, 2020, 43(0): 104-118.
[5] Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels[J]. 材料科学与技术, 2020, 45(0): 1-14.
[6] Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering[J]. 材料科学与技术, 2020, 37(0): 46-54.
[7] Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review[J]. 材料科学与技术, 2020, 44(0): 171-190.
[8] Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys[J]. 材料科学与技术, 2020, 44(0): 31-41.
[9] Yanghuan Zhang, Pengpeng Wang, Zhonghui Hou, Zeming Yuan, Yan Qi, Shihai Guo. Structure and hydrogen storage characteristics of as-spun Mg-Y-Ni-Cu alloys[J]. 材料科学与技术, 2019, 35(8): 1727-1734.
[10] S.J. Song, W.K. Che, J.B. Zhang, L.K. Huang, S.Y. Duan, F. Liu. Kinetics and microstructural modeling of isothermal austenite-to-ferrite transformation in Fe-C-Mn-Si steels[J]. 材料科学与技术, 2019, 35(8): 1753-1766.
[11] Minghe Zhang, Haiyang Chen, Youkang Wang, Shengjie Wang, Runguang Li, Shilei Li, Yan-Dong Wang. Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel[J]. 材料科学与技术, 2019, 35(8): 1779-1786.
[12] Yangpeng Zhang, Dongping Zhan, Xiwei Qi, Zhouhua Jiang. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel[J]. 材料科学与技术, 2019, 35(7): 1240-1249.
[13] Zhangping Hu, Yifei Xu, Yuanyuan Chen, Peter Schützendübeb, Jiangyong Wang, Yuan Huang, Yongchang Liu, Zumin Wang. Anomalous formation of micrometer-thick amorphous oxide surficial layers during high-temperature oxidation of ZrAl2[J]. 材料科学与技术, 2019, 35(7): 1479-1484.
[14] Bo Lin, Kang Wang, Feng Liu, Yaohe Zhou. An intrinsic correlation between driving force and energy barrier upon grain boundary migration[J]. 材料科学与技术, 2018, 34(8): 1359-1363.
[15] Yinxiao Wang, Jiahao Yao, Yi Li. Glass formation adjacent to the intermetallic compounds in Cu-Zr binary system[J]. 材料科学与技术, 2018, 34(4): 605-612.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.