|
|
Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: Role of heating rate |
Geng Liua, Zongbiao Daia, Zhigang Yanga, Chi Zhanga, Jun Lib, Hao Chena,*( ) |
a Key Laboratory for Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China b Research Institute of Baoshan Iron and Steel Co., Ltd, Shanghai, 201900, China |
|
|
Abstract Austenite formation from a ferrite-cementite mixture is a crucial step during the processing of advanced high strength steels (AHSS). The ferrite-cementite mixture is usually inhomogeneous in both structure and composition, which makes the mechanism of austenite formation very complex. In this contribution, austenite formation upon continuous heating from a designed spheroidized cementite structure in a model Fe-C-Mn alloy was investigated with an emphasis on the role of heating rate in kinetic transitions and element partitioning during austenite formation. Based on partition/non-partition local equilibrium (PLE/NPLE) assumption, austenite growth was found alternately contribute by PLE, NPLE and PLE controlled interfaces migration during slow-heating, while NPLE mode predominately controlled the austenitization by a synchronous dissolution of ferrite and cementite upon fast-heating. It was both experimentally and theoretically found that there is a long-distance diffusion of Mn within austenite of the slow-heated sample, while a sharp Mn gradient was retained within austenite of the fast-heated sample. Such a strong heterogeneous distribution of Mn within austenite cause a large difference in driving force for ferrite or martensite formation during subsequent cooling process, which could lead to various final microstructures. The current study indicates that fast-heating could lead to unique microstructures which could hardly be obtained via the conventional annealing process.
|
Received: 26 November 2019
|
Corresponding Authors:
Hao Chen
E-mail: hao. chen@mail.tsinghua.edu.cn
|
[1] |
J. Huang, W.J. Poole, M. Militzer, Metall. Mater. Trans. A 35 (11) (2004) 3363-3375.
|
[2] |
R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, G.R. Purdy, Acta Mater. 61 (2) (2013) 697-707.
|
[3] |
S.S. Sohn, B.J. Lee, S. Lee, N.J. Kim, J.H. Kwak, Acta Mater. 61 (13) (2013) 5050-5066.
doi: 10.1016/j.actamat.2013.04.038
|
[4] |
X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Acta Mater. 154 (2018) 1-13.
doi: 10.1016/j.actamat.2018.05.035
|
[5] |
D.V. Shtansky, K. Nakai, Y. Ohmori, Acta Mater. 47 (9) (1999) 2619-2632.
|
[6] |
Z.D. Li, G. Miyamoto, Z.G. Yang, T. Furuhara, Metall. Mater. Trans. A 42 (6) (2010) 1586-1596.
doi: 10.1007/s11661-010-0560-4
|
[7] |
G.R. Speich, V.A. Demarest, R.L. Miller, Metall. Trans. A 12 (8) (1981) 1419-1428.
|
[8] |
Z. Li, Z. Wen, F. Su, R. Zhang, Z. Zhou, J. Alloys. Compd. 727 (2017) 1050-1056.
doi: 10.1016/j.jallcom.2017.07.111
|
[9] |
U.R. Lenel R.W.K. Honeycombe, Met. Sci. 18 (1984) 503-510.
|
[10] |
M. Hillert, K. Nilsson, L. Torndahl, J. Iron Steel Inst. 209 (1) (1971) 49-66.
|
[11] |
G. Miyamoto, H. Usuki, Z.D. Li, T. Furuhara, Acta Mater. 58 (13) (2010) 4492-4502.
doi: 10.1016/j.actamat.2010.04.045
|
[12] |
J. Emo, P. Maugis, A. Perlade, Comput. Mater. Sci. 125 (2016) 206-217.
doi: 10.1016/j.commatsci.2016.08.041
|
[13] |
Q. Lai, M. Gouné, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, Y. Bréchet, Metall. Mater. Trans. A 47 (7) (2016) 3375-3386.
|
[14] |
M. Enomoto, S. Li, Z.N. Yang, C. Zhang, Z.G. Yang, Calphad 61 (2018) 116-125.
|
[15] |
F. Huyan, J.Y. Yan, L. Höglund, J. Ågren, A. Borgenstam, Metall. Mater. Trans. A 49 (4) (2018) 1053-1060.
|
[16] |
C. Lesch, P. Álvarez, W. Bleck J. Gil Sevillano, Metall. Mater. Trans. A 38 (9) (2007) 1882-1890.
doi: 10.1007/s11661-006-9052-y
|
[17] |
T. Lolla, G. Cola, B. Narayanan, B. Alexandrov, S.S. Babu, Mater. Sci. Technol. 27 (5) (2013) 863-875.
doi: 10.1179/174328409X433813
|
[18] |
D. De Knijf, A. Puype, C. Föjer, R. Petrov, Mater. Sci. Eng., A 627 (2015) 182-190.
|
[19] |
F.C. Cerda, C. Goulas, I. Sabirov, S. Papaefthymiou, A. Monsalve, R.H. Petrov, Mater. Sci. Eng., A 672 (2016) 108-120.
|
[20] |
G. Liu, S. Zhang, J. Li, J. Wang, Q. Meng, Mater. Sci. Eng., A 669 (2016) 387-395.
doi: 10.1016/j.msea.2016.05.106
|
[21] |
W.W. Sun, Y.X. Wu, S.C. Yang, C.R. Hutchinson, Scripta Mater 146 (2018) 60-63.
|
[22] |
R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Acta Mater. 147 (2018) 59-69.
|
[23] |
G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, T. Maki, Acta Mater. 55 (15) (2007) 5027-5038.
|
[24] |
Y.X. Wu, W.W. Sun, M.J. Styles, A. Arlazarov, C.R. Hutchinson, Acta Mater. 159 (2018) 209-224.
doi: 10.1016/j.actamat.2018.08.023
|
[25] |
J. Park, M. Jung, Y.K. Lee, J. Magn, Magn. Mater. 377 (2015) 193-196.
doi: 10.1016/j.jmmm.2014.10.092
|
[26] |
Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 51 (2) (2003) 507-519.
doi: 10.1016/S1359-6454(02)00434-2
|
[27] |
H. Chen, B. Appolaire S. van der Zwaag, Acta Mater. 59 (17) (2011) 6751-6760.
doi: 10.1016/j.actamat.2011.07.033
|
[28] |
M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (15) (2011) 6059-6068.
doi: 10.1016/j.actamat.2011.06.014
|
[29] |
C. Cayron, J. Appl. Crystallogr. 40 (Pt 6) (2007) 1183-1188.
doi: 10.1107/S0021889807048777
pmid: 19461849
|
[30] |
G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Acta Mater. 58 (19) (2010) 6393-6403.
doi: 10.1016/j.actamat.2010.08.001
|
[31] |
M.J. Santofimia, L. Zhao, J. Sietsma, Metall. Mater. Trans. A 40 (1) (2008) 46-57.
doi: 10.1007/s11661-008-9701-4
|
[32] |
M. Belde, H. Springer, G. Inden, D. Raabe, Acta Mater. 86 (2015) 1-14.
doi: 10.1016/j.actamat.2014.11.025
|
[33] |
M. Belde, H. Springer, D. Raabe, Acta Mater. 113 (2016) 19-31.
doi: 10.1016/j.actamat.2016.04.051
|
[34] |
Y. Xia, M. Enomoto, Z. Yang, Z. Li, C. Zhang, Philos. Mag. 93 (9) (2013) 1095-1109.
doi: 10.1080/14786435.2012.744484
|
[35] |
Z.N. Yang, Y. Xia, M. Enomoto, C. Zhang, Z.G. Yang, Metall. Mater. Trans. A 47 (3) (2015) 1019-1027.
doi: 10.1007/s11661-015-3272-y
|
[36] |
J. Zhu, H. Luo, Z. Yang, C. Zhang, S. van der Zwaag, H. Chen, Acta Mater. 133 (2017) 258-268.
doi: 10.1016/j.actamat.2017.05.045
|
[37] |
H. Chen, M. Gounê S.V.D. Zwaag, Comput. Mater. Sci. 55 (2012) 34-43.
doi: 10.1016/j.commatsci.2011.12.002
|
[1] |
Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1
-9
. |
[2] |
Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10
-19
. |
[3] |
Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1
-8
. |
[4] |
Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100
-104
. |
[5] |
Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105
-113
. |
[6] |
Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114
-122
. |
[7] |
Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123
-129
. |
[8] |
Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130
-139
. |
[9] |
Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140
-145
. |
[10] |
H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146
-155
. |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|