J. Mater. Sci. Technol. ›› 2020, Vol. 51: 130-136.DOI: 10.1016/j.jmst.2020.04.001
• Research Article • Previous Articles Next Articles
Haiwen Luoa,*(), Xiaohui Wanga,b,*(
), Zhenbao Liub, Zhiyong Yangb
Received:
2019-11-01
Revised:
2020-01-26
Accepted:
2020-02-04
Published:
2020-08-15
Online:
2020-08-11
Contact:
Haiwen Luo,Xiaohui Wang
Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. J. Mater. Sci. Technol., 2020, 51: 130-136.
Fig. 1. The typical EBSD misorientation and boundary mapping on the hierarchical martensitic microstructure in the studied UHSSS (a) and the illustration for its multi-level microstructural units (b).
Fig. 2. Hierarchical martensitic microstructures on HR75, HR50, HR50-2 and HR75-2 specimens. (a) The prior austenite grains examined by OM; (b) martensite packets examined by SEM; (c) martensite blocks examined by EBSD; (d) martensite laths examined by TEM.
Sample No. | Hot rolling Process | da/μm | dp/μm | db/μm | dl/μm | Aspect ratio | CUN/J | YS /MPa |
---|---|---|---|---|---|---|---|---|
HR75 | 75% reduction and finished at 1050?°C | 6.3?±?3.7 | 2.8?±?1.1 | 2.1?±?1.0 | 0.24?±?0.11 | 11.6 | 186?±?3 | 1065?±?4 |
HR50 | 50% reduction and finished at 1050?°C | 14.5?±?8.8 | 6.3?±?2.7 | 2.1?±?0.9 | 0.26?±?0.12 | 24.2 | 193?±?3 | 1035?±?2 |
HR50-2 | 50% reduction and finished at 1080?°C | 16.1?±?9.1 | 6.7?±?2.2 | 2.2?±?0.9 | 0.25?±?0.11 | 21.9 | 190?±?5 | 1020?±?2 |
HR75-2 | HR75 reheated to 1080?°C for 1?h | 76.1?±?45.3 | 24.0?±?10.6 | 2.7?±?1.0 | 0.44?±?0.18 | 56.6 | 125?±?1 | 913?±?3 |
Table 1 The hierarchical martensitic microstructural features, including the average sizes of prior austenite grains (da), martensite packets (dp)/blocks (db)/laths (dl) and the aspect ratio of martensite lath, and mechanical properties, including both Charpy U-Notch impact toughness (CUN) and yield strength (0.2 % offset proof stress, YS), were all measured on UHSSS specimens subjected to four different manufacturing processes
Sample No. | Hot rolling Process | da/μm | dp/μm | db/μm | dl/μm | Aspect ratio | CUN/J | YS /MPa |
---|---|---|---|---|---|---|---|---|
HR75 | 75% reduction and finished at 1050?°C | 6.3?±?3.7 | 2.8?±?1.1 | 2.1?±?1.0 | 0.24?±?0.11 | 11.6 | 186?±?3 | 1065?±?4 |
HR50 | 50% reduction and finished at 1050?°C | 14.5?±?8.8 | 6.3?±?2.7 | 2.1?±?0.9 | 0.26?±?0.12 | 24.2 | 193?±?3 | 1035?±?2 |
HR50-2 | 50% reduction and finished at 1080?°C | 16.1?±?9.1 | 6.7?±?2.2 | 2.2?±?0.9 | 0.25?±?0.11 | 21.9 | 190?±?5 | 1020?±?2 |
HR75-2 | HR75 reheated to 1080?°C for 1?h | 76.1?±?45.3 | 24.0?±?10.6 | 2.7?±?1.0 | 0.44?±?0.18 | 56.6 | 125?±?1 | 913?±?3 |
Fig. 4. Plots of yield strength vs. the reciprocal square root of (a) prior austenite grain size (da) and packet size (dp), (b) block width (db) and lath width (dl) as well as (c) the size defined by high angle boundaries (dHBs). All of them are fitted by Hall-Petch equation with the correlation coefficient, R.
Fig. 5. SEM images on the impact fracture surface for HR75-2 (a), HR75 (b) and HR50 (c) specimens; the distributions of dimple sizes in three specimens are shown in (d).
Fig. 6. EBSD misorientation and boundary image mapping on the propagating cracks in HR50 (a) and HR75 (b); Bright-field TEM image and selected area electron diffraction of film-like retained austenite in HR50 (c); EBSD image quality and phase mapping on the matrix of HR50 without cracks (d), near cracks (e) and on HR75 (f) and HR75-2 (g) both without cracks. The green represents FCC phase. Constituents of high angle boundaries vary in specimens having the different PAGS (h).
[1] | S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater., 51 (6) ( 2003), pp. 1789-1799. |
[2] | S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in alloy steels, Acta Mater., 54 ( 19) ( 2006), pp. 5323-5331. |
[3] | R.A. Grange, Strengthening Steel by Austenite Grain Refinement, Trans. ASM, 59 ( 1) ( 1966),pp. 26-59. |
[4] | T. Swarr, G. Krauss, The effect of structure on the deformation of as-quenched and tempered martensite in a Fe-0.2 pct C alloy, Metall. Trans. A, 7(1976), pp. 41-48. |
[5] | M.J. Roberts, Effect of transformation substructure on the strength and toughness of Fe-Mnalloys, Mater. Trans. B, 1 (12) ( 1970), pp. 3287-3294. |
[6] | C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scr. Mater., 58 ( 6) ( 2008), pp. 492-495. |
[7] | Y. Tomita, K. Okabayashi, Effect of microstructure on strength and toughness of heat-treated low alloy structural steels, Metall. Trans. A, 17(1986), pp. 1203-1207. |
[8] | S. Morito, H. Tanaka, R. Konishi, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater., 51 ( 2003)1789-6. |
[9] | Z.J. Luo, J.C. Shen, H. Su, Y.H. Ding, C.F. Yang, X. Zhu, Effect of Substructure on Toughness of Lath Martensite/Bainite Mixed Structure in Low-Carbon Steels, Iron Steel Res. Inst., 17 ( 11) ( 2010), pp. 40-48. |
[10] | Y.L. Liang, S.L. Long, P.W. Xu, Y.M. Lu, Y. Jiang, Y. Liang, M. Yang, The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel, Mater. Sci. Eng. A, 695(2017), pp. 154-164,695. |
[11] | S.L. Long, Y.L. Liang, Y. Jiang, Y. Liang, M. Yang, Y.L. Yi Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel, Mater. Sci. Eng. A, 676(2016), pp. 38-47. |
[12] | Z.B. Liu, Z.Y. Yang, Q.L. Yong, J.X. Liang, Y.Q. Sun, W.H. Li, C.Y. Song, Strengthening-toughening mechanism of an Cr-Co-Ni-Mo ultra-high strength maraging stainless steel, J. Iron Steel Res., 5 ( 20) ( 2008),pp. 27-32. |
[13] | X.H. Wang, Z.B. Liu, H.W. Luo, Complicated Interaction of Dynamic Recrystallization and Precipitation During Hot Deformation of Ultrahigh-Strength Stainless Steel, Metal. Mater. Trans. A, 47(2016), pp. 6248-6258. |
[14] | S. Moritoa, A.H. Phamb, T. Hayashic, T. Ohbaa, Block boundary analyses to identify martensite and bainite, Materials Today: Proceedings, 2S(2015), pp. S913-S916. |
[15] | M. Wang, H. Dong, C. Wang, J. Shi, W. Hui, Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol., 23 ( 5) ( 2007), pp. 659-664. |
[16] | C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scr. Mater., 58 ( 6) ( 2008),pp. 92-495. |
[17] | G. Badinier, C.W. Sinclair, S. Allain, F. Danoix, M. Gouné, The mechanisms of transformation and mechanical behavior of ferrous martensite, Reference Module in Materials Science and Materials Engineering, Elsevier, New York, NY, USA( 2017), ISBN 9780128035818. |
[18] | T. Ohmura, A.M. Minor, E.A. Stach, J.W. Morris Jr. Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope, J. Mater. Res., 19 (12) ( 2004), pp. 3626-3632. |
[19] | K. Srinivasan, Y. Huang, O. Kolednik, T. Siegmund, The size dependence of microtoughness in ductile fracture, J. Mech. Phys. Solids, 56(2008), pp. 2707-2726. |
[20] | H.F. Li, S.G. Wang, P. Zhang, R.T. Qua, Z.F. Zhang, Crack propagation mechanisms of AISI 4340 steels with different strength and toughness, Mater. Sci. Eng. A, 729(2018), pp. 130-140. |
[21] | L. Kucherov, E.B. Tadmor, Twin nucleation mechanisms at a crack tip in an hcp material: molecular simulation, Acta Mater., 55(2007), pp. 2065-2074. |
[22] | V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, M.A. Meyers, Void growth by dislocation emission, Acta Mater., 52 ( 6) ( 2004), pp. 1397-1408. |
[23] | J.W. MORRIS Jr. On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ Int., 51(2011), pp. 1569-1575. |
[24] | S. Li, G. Zhu, Y. Kang, Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C-1.1Si-1.7Mn steel, J.Alloys Compd., 675(2016), pp. 104-115. |
[25] | Z. Guo, W. Sha, D. Vaumousse, Microstructural evolution in a PH13-8 stainless steel after aging, Acta Mater., 51(2003), pp. 101-116. |
[26] | M. Kuzmina, D. Ponge, D. Raabe, Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9wt.% medium Mn steel, Acta Mater., 86(2015), pp. 182-192. |
[27] | D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, P.P. Choi, Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite, Acta Mater., 61(2013), pp. 6132-6152. |
[1] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[2] | Kui Chen, Huabing Li, Zhouhua Jiang, Fubin Liu, Congpeng Kang, Xiaodong Ma, Baojun Zhao. Multiphase miacrostructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 81-92. |
[3] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[4] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[5] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[6] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[7] | Y.Z. Tian, Y.P. Ren, S. Gao, R.X. Zheng, J.H. Wang, H.C. Pan, Z.F. Zhang, N.T suji, G.W. Qin. Two-stage Hall-Petch relationship in Cu with recrystallized structure [J]. J. Mater. Sci. Technol., 2020, 48(0): 31-35. |
[8] | Haidong Sun, Yuhui Wang, Zuohua Wang, Ning Liu, Yan Peng, Xiujuan Zhao, Ruiming Ren, Hongwang Zhang. Twinned substructure in lath martensite of water quenched Fe-0.2 %C and Fe-0.8 %C steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 126-132. |
[9] | Ruoxian Wang, Gaowu Qin, Erlin Zhang. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application [J]. J. Mater. Sci. Technol., 2020, 52(0): 127-135. |
[10] | Shuiyuan Yang, Lipeng Guo, Xinyu Qing, Shen Hong, Jixun Zhang, Mingpei Li, Cuiping Wang, Xingjun Liu. Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal [J]. J. Mater. Sci. Technol., 2020, 57(0): 43-50. |
[11] | Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45(0): 1-14. |
[12] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[13] | Chaoyun Yang, Yikun Luan, Dianzhong Li, Yiyi Li. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35(7): 1298-1308. |
[14] | K. Zhang, Z.B. Wang. Strain-induced formation of a gradient nanostructured surface layer on an ultrahigh strength bearing steel [J]. J. Mater. Sci. Technol., 2018, 34(9): 1676-1684. |
[15] | Chao Zhang, Lei Cui, Yongchang Liu, Chenxi Liu, Huijun Li. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel [J]. J. Mater. Sci. Technol., 2018, 34(5): 756-766. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||