Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 126-132    DOI: 10.1016/j.jmst.2019.12.025
Research Article Current Issue | Archive | Adv Search |
Twinned substructure in lath martensite of water quenched Fe-0.2 %C and Fe-0.8 %C steels
Haidong Suna, Yuhui Wanga, Zuohua Wanga, Ning Liub, Yan Penga, Xiujuan Zhaoc, Ruiming Renc, Hongwang Zhanga,*()
a National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, College of Mechanical Engineering, Yanshan University,Qinhuangdao, 066004, China
b Liren College of Yanshan University, Yanshan University, Qinhuangdao, 066004, China
c School of Materials Science & Engineering, Dalian Jiaotong University, Dalian, 116028, China
Download:  HTML  PDF(4205KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the present investigation, twinned substructures within lath martensite of two water quenched steels (0.2 wt. %C and 0.8 wt. %C) were studied. The lath martensite has typical hierarchical packet-block-lath with dislocation substructure. Besides, laths that are misoriented by <011>/70.5° or <111>/60° and bordered by {011} plane, namely twinned laths, are observed, of which the density increases and the scale decreases as more carbons were presented. Such twinned laths have body centered cubic (bcc) crystal structure, belonging to twinned variants following the classical Kurdjumov-Sachs (K-S) orientation relationship with respect to the parent austenite. Unlike bcc {112}<111> twins, twinned variants produce strong double diffraction and in turn the extra diffraction spots that are commonly observed in the martensite in steels with wide range of carbon contents.

Key words:  Twinned variant      Lath martensite      Double electron diffraction      Orientation relationship      Steels     
Received:  09 November 2019     
Corresponding Authors:  Hongwang Zhang     E-mail:  hwzhang@ysu.edu.cn

Cite this article: 

Haidong Sun, Yuhui Wang, Zuohua Wang, Ning Liu, Yan Peng, Xiujuan Zhao, Ruiming Ren, Hongwang Zhang. Twinned substructure in lath martensite of water quenched Fe-0.2 %C and Fe-0.8 %C steels. J. Mater. Sci. Technol., 2020, 49(0): 126-132.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.12.025     OR     https://www.jmst.org/EN/Y2020/V49/I0/126

Fig. 1.  XRD profiles of the starting and quenched Fe-0.2C and Fe-0.8C steel samples. The standard diffraction peaks for several common phases in steels were inserted for comparison.
Fig. 2.  Optical micrographs of the starting and the quenched samples. (a, b): Fe-0.2C steel, (c, d): Fe-0.8C steel. Dotted line in (b) encloses martensite packets (indicated by the thick lines) and blocks within a prior austenite grain.
No. [m]//[A] Axis(indexed by martensite) Angle (deg.)
PI
(111) A//(011)m
V1 [-1 0 1]//[-1 -1 1]
V2 [-1 0 1]//[-1 1 -1] [0.5774 -0.5774 0.5774] 60.00
V3 [0 1 -1]//[-1 -1 1] [0.0000 -0.7071 -0.7071] 60.00
V4 [0 1 -1]//[-1 1 -1] [0.0000 0.7071 0.7071] 10.53
V5 [1 -1 0]//[-1 -1 1] [0.0000 0.7071 0.7071] 60.00
V6 [1 -1 0]//[-1 1 -1] [0.0000 -0.7071 -0.7071] 49.47
PII
(1-11) A//(011)m
V7 [1 0 -1]//[-1 -1 1] [-0.5774 -0.5774 0.5774] 49.47
V8 [1 0 -1]//[-1 1 -1] [0.5774 -0.5774 0.5774] 10.53
V9 [-1 -1 0]//[-1 -1 1] [-0.1862 0.7666 0.6145] 50.51
V10 [-1 -1 0]//[-1 1 -1] [-0.4904 -0.4625 0.7387] 50.51
V11 [0 1 1]//[-1 -1 1] [0.3543 -0.9329 -0.0650] 14.88
V12 [0 1 1]//[-1 1 -1] [0.3568 -0.7136 0.6029] 57.21
PIII
(1-11) A//(011)m
V13 [0 -1 1]//[-1 -1 1] [0.9329 0.3543 -0.0650] 14.88
V14 [0 -1 1]//[-1 1 -1] [-0.7387 0.4625 -0.4904] 50.51
V15 [-1 0 -1]//[-1 -1 1] [-0.2461 -0.6278 -0.7384] 57.21
V16 [-1 0 -1]//[-1 1 -1] [0.6589 0.6589 0.3628] 20.61
V17 [1 1 0]//[-1 -1 1] [-0.6589 0.3628 -0.6589] 60.00
V18 [1 1 0]//[-1 1 -1] [-0.3022 -0.6255 -0.7193] 47.11
PIV
(1-11) A//(011)m
V19 [-1 1 0]//[-1 -1 1] [-0.6145 0.1862 -0.7666] 50.51
V20 [-1 1 0]//[-1 1 -1] [-0.3568 -0.6029 -0.7136] 57.21
V21 [0 -1 -1]//[-1 -1 1] [0.9551 0.0000 -0.2962] 20.61
V22 [0 -1 -1]//[-1 1 -1] [-0.7193 0.3022 -0.6255] 47.11
V23 [1 0 1]//[-1 -1 1] [-0.7384 -0.2461 0.6278] 57.21
V24 [1 0 1]//[-1 1 -1] [0.9121 0.4100 0.0000] 21.06
Table 1  24 martensitic variants in the K-S orientation relationship and the misorientation axis/angle between V1 and the rest variants [3,20].
Group Var. Pair Axis/angle pair (r/θ)
Twin-related V1-V2; V3-V4; V5-V6; [0.57735 -0.57735 0.57735]/60°
Bain group V1-V4; V2-V5; V3-V6; [0 0.70711 0.70711]/10.53°
Others V1-V3; V2-V4; V4-V6 ; V5-V1; V3-V5; V6-V2 [0 0.70711 0.70711]/60°
V1-V6; V3-V2; V5-V4 [0 0.70711 0.70711]/49.47°
Table 2  Variant combinations among V1 to V6 following K-S relationship [3,20].
Fig. 3.  EBSD characterizations of the lath martensite in Fe-0.2C (a, b) and Fe-0.8C (c, d, e) steel samples. In the inverse pole figure (IPF) images (a, c), twin-related variant groups like V1-V2, V3-V4, V5-V6 were marked by red rectangle and arrows, while Bain groups, i.e. V1-V4, V2-V5, V3-V6 were marked by black rectangle and arrows. {001} pole figures in b and d show the experimental (black dots) and calculated (red triangles) orientation distribution according to K-S relationship. Histograms (e) show the experimental and theoretical misorientation distribution between 24 variants following K—S relationship. See text for detailed information.
Fig. 4.  TEM characterization of the lath martensite induced in Fe-0.2C steel (a-c) and Fe-0.8C steel (d-f). Dashed circles in TEM image (a, d) indicate the areas where SAED patterns of (b, c) and (e, f), respectively, were obtained. As the sample was tilted with [$\bar{1}$10] and [$\bar{1}$11], respectively, parallel with the electron beam, circled laths in (a, d) give rise to mirror symmetric diffraction patterns and extra diffraction spots. See text for detail.
Fig. 5.  Schematic illustration of the primary and double diffraction of bcc {112}<111> twin (a, c) and twinned variants (b, d) as the incident electron beam is parallel with [$\bar{1}$10]. The potential extra positions by double diffraction were marked by red “×” in (c) and red solid circles in (d).
[1] G. Krauss, Mater. Sci. Eng. A 273-275 (1999) 40-57.
[2] T. Maki, in: E. Pereloma, D.V. Edmonds (Eds.), Phase Transformations in Steels, Woodhead, Cambridge, 2012.
[3] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789-1799.
[4] B. Sandvik, C. Wayman, Metal. Mater. Trans. A 14 (1983) 809-844.
[5] S. Morito, J. Nishikawa, T. Maki, ISIJ Int. 43 (2003) 1475-1477.
[6] D.H. Ping, T.W. Liu, M. Ohnuma, T. Ohmura, T. Abe, H. Onodera, ISIJ Int. 57 (2017) 1233-1240.
doi: 10.2355/isijinternational.ISIJINT-2016-624
[7] D.H. Ping, A. Singh, S. Guo, T. Ohmura, M. Ohnuma, T. Abe, H. Onodera, ISIJ Int. 58 (2018) 159-164.
[8] P.M. Kelly, J. Nutting, Proc. R. Soc. Lond. A 259 (1960) 45-57.
[9] P.M. Kelly, J. Nutting, J. Iron Steel Inst. 197 (1961) 199-211.
[10] O. Johari, G. Thomas, Acta Metall. 13 (1965) 1211-1212.
[11] P.M. Kelly, Mater. Trans. JIM 33 (1992) 235-242.
doi: 10.2320/matertrans1989.33.235
[12] S.J. Wang, M.L. Sui, Y.T. Chen, Q.H. Lu, E. Ma, X.Y. Pei, Q.Z. Li, H.B. Hu, Sci. Rep. 3 (2013) 1086.
pmid: 23336068
[13] A. Shibata, M. Morito, T. Furuhara, T. Maki, Acta Mater. 57 (2009) 483-492.
doi: 10.1016/j.actamat.2008.09.030
[14] A. Shibata, T. Murakami, S. Morito, T. Furuhara, T. Maki, Mater. Trans. 49 (2008) 1242-1248.
[15] R.L. Patterson, C.M. Wayman, Acta Metall. 14 (1966) 347-369.
doi: 10.1016/0001-6160(66)90094-0
[16] J.D. Gates, A. Atrens, I.O. Smith, Z. Werkstofftech. 18 (1987) 179-185.
doi: 10.1002/(ISSN)1521-4052
[17] R. Padmanabhan, W.E. Wood, Mater. Sci. Eng. A 66 (1984) 1-11.
[18] P.A. Molian, Mater. Sci. Eng. A 51 (1981) 253-260.
[19] D.H. Ping, Acta Metall. Sin.(Engl. Lett.) 27 (2014) 1-11.
[20] G. Kurdjumov, G. Sachs, Z. Phys. 64 (1930) 325-343.
[21] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A. Borgenstam, Acta Mater. 60 (2012) 7265-7274.
[22] N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 60 (2012) 2387-2396.
[23] R.F. Vyhnal, S.V. Radcliffe, Acta Metall. 15 (1967) 1475-1488.
[24] S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Mater. 54 (2006) 5323-5331.
[25] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54 (2006) 1279-1288.
doi: 10.1016/j.actamat.2005.11.001
[26] H.W. Zhang, Y.H. Wang, Y. Peng, P.W. Zhu, J.H. Liu, Z.Q. Feng, G.L. Wu, X.X. Huang, Mater. Res. Lett. 7 (2019) 354-360.
[27] D.H. Ping, W.T. Geng, Mater. Chem. Phys. 139 (2013) 830-835.
[28] P.B. Hirsch, A. Howie, E.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals, Butterworth Press, New York, 1967.
[29] J.W. Edington, London, 1975.
[30] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Science 300 (2003) 1275-1277.
doi: 10.1126/science.1083727 pmid: 12714676
[31] L. Lu, Y.F. Shen, X.H. Chen, L. Qian, K. Lu, Science 304 (2003) 422-426.
doi: 10.1126/science.1092905 pmid: 15031435
[32] L.C. Chang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11 (1995) 105-108.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. 材料科学与技术, 2020, 47(0): 1-9.
[2] Yong Hua, Sikiru Mohammed, Richard Barker, Anne Neville. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2-saturated brine[J]. 材料科学与技术, 2020, 41(0): 21-32.
[3] R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint[J]. 材料科学与技术, 2020, 42(0): 220-228.
[4] Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels[J]. 材料科学与技术, 2020, 49(0): 202-210.
[5] Liying Zhou, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding[J]. 材料科学与技术, 2019, 35(8): 1671-1680.
[6] Sun Zhi-peng, Zhang Jin-yu, Dai Fu-zhi, Xu Ben, Zhang Wen-zheng. A molecular dynamics study on formation of the self-accommodation microstructure during phase transformation[J]. 材料科学与技术, 2019, 35(11): 2638-2646.
[7] Wei-Chao Jiao, Hua-Bing Li, Jing Dai, Hao Feng, Zhou-Hua Jiang, Tao Zhang, Da-Ke Xu, Hong-Chun Zhu, Shu-Cai Zhang. Effect of partial replacement of carbon by nitrogen on intergranular corrosion behavior of high nitrogen martensitic stainless steels[J]. 材料科学与技术, 2019, 35(10): 2357-2364.
[8] Jialong Tian, M. Babar Shahzad, Wei Wang, Lichang Yin, Zhouhua Jiang, Ke Yang. Role of Co in formation of Ni-Ti clusters in maraging stainless steel[J]. 材料科学与技术, 2018, 34(9): 1671-1675.
[9] Yi Shao, Chenxi Liu, Zesheng Yan, Huijun Li, Yongchang Liu. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review[J]. 材料科学与技术, 2018, 34(5): 737-744.
[10] V.S.Y. Injeti, Z.C. Li, B. Yu, R.D.K. Misra, Z.H. Cai, H. Ding. Macro to nanoscale deformation of transformation-induced plasticity steels: Impact of aluminum on the microstructure and deformation behavior[J]. 材料科学与技术, 2018, 34(5): 745-755.
[11] S.G. Wang, M. Sun, Y.H. Xu, K. Long, Z.D. Zhang. Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature[J]. 材料科学与技术, 2018, 34(12): 2498-2506.
[12] H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling[J]. 材料科学与技术, 2018, 34(11): 2183-2188.
[13] F.C.Liu, Y.Hovanski, M.P.Miles, C.D.Sorensen, T.W.Nelson. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties[J]. 材料科学与技术, 2018, 34(1): 39-57.
[14] Li Changsheng, Ma Biao, Song Yanlei, Zheng Jianjun, Wang Jikai. Grain refinement of non-magnetic austenitic steels during asymmetrical hot rolling process[J]. 材料科学与技术, 2017, 33(12): 1572-1576.
[15] Rui Shao-Shi, Shang Yi-Bo, Qiu Wenhui, Niu Li-Sha, Shi Hui-Ji, Matsumoto Shunsaku, Chuman Yasuharu. Fracture mode identification of low alloy steels and cast irons by electron back-scattered diffraction misorientation analysis[J]. 材料科学与技术, 2017, 33(12): 1582-1595.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.