J. Mater. Sci. Technol. ›› 2020, Vol. 51: 137-150.DOI: 10.1016/j.jmst.2019.09.044
• Research Article • Previous Articles Next Articles
Huihui Yang, Guanyi Jing, Piao Gao, Zemin Wang*(), Xiangyou Li*(
)
Received:
2019-07-11
Revised:
2019-09-25
Accepted:
2019-09-27
Published:
2020-08-15
Online:
2020-08-11
Contact:
Zemin Wang,Xiangyou Li
Huihui Yang, Guanyi Jing, Piao Gao, Zemin Wang, Xiangyou Li. Effects of circular beam oscillation technique on formability and solidification behaviour of selective laser melted Inconel 718: From single tracks to cuboid samples[J]. J. Mater. Sci. Technol., 2020, 51: 137-150.
Group | Single-track | Multi-layer | Cuboid sample |
---|---|---|---|
Laser power, P (W) | 300 | 300 | 300 |
The speed of single molten pool formation, v (mm/s) | 10 | 10 | 10 |
Scanning distance, S (mm) | - | - | 0.3-1 |
Layer thickness, T (μm) | 40 | 40 | 80 |
Amplitude, A (mm) | 0-1.1 | 0, 0.5 | 0, 0.5 |
Oscillating frequency, F (Hz) | 0-800 | 0, 300 | 0-500 |
Table 1 Design of experiments for SLMed Inconel 718 single-track, multi-layer and cuboid samples.
Group | Single-track | Multi-layer | Cuboid sample |
---|---|---|---|
Laser power, P (W) | 300 | 300 | 300 |
The speed of single molten pool formation, v (mm/s) | 10 | 10 | 10 |
Scanning distance, S (mm) | - | - | 0.3-1 |
Layer thickness, T (μm) | 40 | 40 | 80 |
Amplitude, A (mm) | 0-1.1 | 0, 0.5 | 0, 0.5 |
Oscillating frequency, F (Hz) | 0-800 | 0, 300 | 0-500 |
Fig. 4. (a) Chart to describe the depth, width and height of rectangle-shape molten pool; Measured sizes of rectangle-shape molten pools under various oscillating frequencies (b) and amplitudes (c).
Fig. 8. Time series snapshots of Inconel 718 molten pool evolution during different SLM processes including non-oscillation (a1-d1) and oscillation (a2-d4).
Laser power, P (W) | Scanning speed, v (mm/s) | Amplitude, A (mm) | Oscillating frequency, F (Hz) | Δt (s) | Cooling rate, T˙ (K/s) |
---|---|---|---|---|---|
300 | 10 | 0 | 0 | 69.05 | 2.4 × 104 |
0.5 | 50 | 5.96 | 2.78 × 105 | ||
0.5 | 100 | 40.93 | 4.06 × 104 | ||
0.5 | 500 | 30.05 | 5.53 × 104 |
Table 2 Cooling rates measured from video acquired during formation processes of molten pools with and without oscillation.
Laser power, P (W) | Scanning speed, v (mm/s) | Amplitude, A (mm) | Oscillating frequency, F (Hz) | Δt (s) | Cooling rate, T˙ (K/s) |
---|---|---|---|---|---|
300 | 10 | 0 | 0 | 69.05 | 2.4 × 104 |
0.5 | 50 | 5.96 | 2.78 × 105 | ||
0.5 | 100 | 40.93 | 4.06 × 104 | ||
0.5 | 500 | 30.05 | 5.53 × 104 |
Fig. 11. Optical images (a, a1) and EBSD images at different zones of oscillating and non-oscillating thin walls: inverse pole maps (b, c and b1, c1) and pole maps (d, e and d1, e1).
Fig. 16. Enlarged SEM figures of SLMed oscillating and non-oscillating (a, c) Inconel 718 cuboid samples; (b, d) are grain boundaries map with various angles in a bigger area.
[1] | J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng , Rapid Prototyping J., 23(2017), pp. 217-226. |
[2] | H. Yang, J. Yang, W. Huang, G. Jing, Z. Wang, J. Mater. Sci. Technol., 35(2019), pp. 1925-1930. |
[3] | J. Li, Z. Zhao, P. Bai, H. Qu, B. Liu, L. Li, L. Wu, R. Guan, H. Liu, Z. Guo, J. Alloys. Compd., 772(2019), pp. 861-870. |
[4] | J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng , Mater. Des., 110(2016), pp. 558-570. |
[5] | H. Yang, J. Yang, W. Huang, Z. Wang, X. Zeng , Mater. Des., 156(2018), pp. 407-418. |
[6] | K. Wei, Z. Wang, X. Zeng , Mater. Lett., 156(2015), pp. 187-190. |
[7] | S. Zhang, Q. Wei, G. Lin, X. Zhao, Y. Shi , Adv. Mater. Res., 189(2011), pp. 3664-3667. |
[8] | H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng , Mater. Sci. Eng. A, 656(2016), pp. 47-54. |
[9] | W. Li, J. Liu, S. Wen, C. Yan, Y. Shi , Mater. Charact., 113(2016), pp. 125-133. |
[10] | H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng , Scr. Mater., 134(2017), pp. 6-10. |
[11] | R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloys. Compd., 746(2018), pp. 125-134. |
[12] | D. Tomus, T. Jarvis, X. Wu, J. Mei, P. Rometsch, E. Herny, J.F. Rideau, S. Vaillant , Phys. Proc., 41(2013), pp. 816-820. |
[13] | Y.L. Hu, X. Lin, X.B. Yu, J.J. Xu, M. Lei, W.D. Huang, J. Alloys. Compd., 711(2017), pp. 267-277. |
[14] | N.J. Harrison, I. Todd, K. Mumtaz , Acta Mater., 94(2015), pp. 59-68. |
[15] | T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, X. Zeng , Mater. Des., 135(2017), pp. 257-266. |
[16] | X. Nie, H. Zhang, H. Zhu, L. Ke, X. Zeng, J. Alloys. Compd., 764(2018), pp. 977-986. |
[17] | K. Hao, G. Li, M. Gao, X. Zeng, J. Mate , Proc. IEEE Int. Symp. Signal Proc. Inf. Tech., 225(2015), pp. 77-83. |
[18] | B.H. Kim, N.H. Kang, W.T. Oh, C.H. Kim, J.H. Kim, Y.S. Kim, Y.H. Pari, J. Mater , Sci. Technol., 27(2011), pp. 93-96. |
[19] | L. Wang, M. Gao, C. Zhang, X. Zeng , Mater. Des., 108(2016), pp. 707-717. |
[20] | M. Schweier, J.F. Heins, M.W. Haubold, M.F. Zaeh , Phys. Proc., 41(2013), pp. 20-30. |
[21] | K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina , Acta Mater., 60(2012), pp. 2229-2239. |
[22] | Q. Jia, D. Gu, J. Alloys. Compd., 585(2014), pp. 713-721. |
[23] | Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, X. Zeng, J. Alloys. Compd., 513(2012), pp. 518-523. |
[24] | W. Huang, J. Yang, H. Yang, G. Jing, Z. Wang, X. Zeng , Mater. Sci. Eng. A, 750(2019), pp. 98-107. |
[25] | K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai , Mater. Sci. Eng. A, 735(2018), pp. 182-190. |
[26] | V.A. Popovich, E.V. Borisov, A.A. Popovich, V.Sh. Sufiiarov, D.V. Masaylo, L. Alzina , Mater. Des., 114(2017), pp. 441-449. |
[27] | H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Tech., 34(2018), pp. 1799-1804. |
[28] | X. Li, J.J. Shi, C.H. Wang, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, G.F. Chen, J. Alloys. Compd., 764(2018), pp. 639-649. |
[29] | J.P. Choi, G.H. Shin, S.S. Yang, D.Y. Yang, J.S. Lee, M. Brochu, J.H. Yu , Powder Technol., 310(2017), pp. 60-66. |
[30] | Q. Guo, C. Zhao, L.I. Escano, Z. Young, L. Xiong, K. Fezzaa, W. Everhart, B. Brown, T. Sun, L. Chen, L. Chen , Acta Mater., 151(2018), pp. 169-180. |
[31] | L. Thijs, K. Kempen, J.P. Kruth, J.V. Humbeeck , Acta Mater., 61(2013), pp. 1809-1819. |
[32] | U.S. Bertoli, G. Guss, S. Wu, M.J. Matthews, J.M. Schoenung , Mater. Des., 135(2017), pp. 385-396. |
[33] | Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, L.C. Zhang, J. Alloys. Compd., 735(2018), pp. 1414-1421. |
[34] | B. Zhang, H. Liao, C. Coddet , Appl. Surf. Sci., 279(2013), pp. 310-316. |
[35] | Y. Chen, F. Lu, K. Zhang, P. Nie, S.R.E. Hosseini, K. Feng, Z. Li, J. Alloys. Compd., 670(2016), pp. 312-321. |
[36] | R. Acharya, J.A. Sharon, A. Staroselsky , Acta Mater., 124(2017), pp. 360-371. |
[37] | W. Chuan, X. Chen, C. Sun , Heat Treat. Met., 3(2000), pp. 11-12. |
[38] | D. Wang, C. Song, Y. Yang, Y. Bai , Mater. Des., 100(2016), pp. 291-299. |
[39] | H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Technol., 34(2018), pp. 1799-1804. |
[40] | M. Alimardani, E. Toyserkani, J.P. Huissoon, C.P. Paul , Opt. Laser Eng., 47(2009), pp. 1160-1168. |
[41] | M. Takeyama, N. Gomi, S. Morita, T. Mastsuo Phase Equilibria and Lattice Parameters of Fe2Nb Laves Phase in Fe-Ni-Nb Ternary System at Elevated Temperatures, MRS Online Proceedings Library Archive, 842 (2004) S5. 37. |
[42] | S.H. Sun, K. Hagihara, T. Nakano , Mater. Des., 140(2018), pp. 307-316. |
[43] | H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Technol., 34(2018), pp. 1799-1804. |
[44] | T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano , Scr. Mater., 132(2017), pp. 34-38. |
[1] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[2] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[3] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[4] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[5] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[6] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[7] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[8] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[9] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[10] | Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39(0): 144-154. |
[11] | Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis [J]. J. Mater. Sci. Technol., 2020, 41(0): 56-67. |
[12] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[13] | Haoqing Li, Ming Wang, Dianjun Lou, Weilong Xia, Xiaoying Fang. Microstructural features of biomedical cobalt-chromium-molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment [J]. J. Mater. Sci. Technol., 2020, 45(0): 146-156. |
[14] | Yuan Zhong, Leifeng Liu, Ji Zou, Xiaodong Li, Daqing Cui, Zhijian Shen. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 97-105. |
[15] | P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 18-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||