|
|
Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting |
P. Wangab*( ), C.S. Laoa, Z.W. Chena, Y.K. Liuc, H. Wangc, H. Wendrockb, J. Eckertde, S. Scudinob |
a Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Nanhai Street 3688, 518060, Shenzhen, China b Institute for Complex Materials, IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany c Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Nanhai Street 3688, 518060, Shenzhen, P.R. China d Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700, Leoben, Austria e Department of Materials Science, Montanuniversität Leoben, Jahnstraße 12, A-8700, Leoben, Austria |
|
|
Abstract An Al-12Si/Al-3.5Cu-1.5Mg-1Si bimetal with a good interface was successfully produced by selective laser melting (SLM). The SLM bimetal exhibits four successive zones along the building direction: an Al-12Si zone, an interfacial zone, a texture-strengthening zone and an Al-Cu-Mg-Si zone. The interfacial zone (< 0.2 mm thick) displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure, resulting in the lowest hardness of the four zones. The texture-strengthening zone (around 0.3 mm thick) shows a remarkable variation of the hardness and <001> fiber texture. Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction. Additionally, a strong <001> fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction. The bimetal exhibits a room temperature yield strength of 267 ± 10 MPa and an ultimate tensile strength of 369 ± 15 MPa with elongation of 2.6% ± 0.1%, revealing the potential of selective laser melting in manufacturing dissimilar materials.
|
Received: 13 February 2019
|
Corresponding Authors:
Wang P.
E-mail: peiwang@szu.edu.cn
|
[1] | T.S. Parel, S.C. Wang, M.J. Starink, Hardening of an Al-Cu-Mg alloy containing Types I and II S phase precipitates, Mater. Des. 31 (2010) S2-S5. | [2] | C.K.S. Moy, M. Weiss, J.H. Xia, G. Sha, S.P. Ringer, G. Ranzi, Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy, Mater. Sci. Eng. A 552 (2012) 48-60. | [3] | S. Tailor, R.M. Mohanty, V.K. Sharma, P.R. Soni, A.V. Doub, Nanostructured 2024Al-SiCp composite coatings, Mater. Sci. Eng. A 552 (2012) 48-60. | [4] | P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys, Int. Mater.Rev. 54 (2009) 49-93. | [5] | S.T. Amancio-Filho, S. Sheikhi, J.F. dos Santos, C. Bolfarini, Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4, J. Mater. Process.Tech. 206 (2008) 132-142. | [6] | M. Aonuma, K. Nakata, Dissimilar Metal Joining of 2024 and 7075 Aluminium alloys to titanium alloys by friction stir welding, Mater. Trans. 52 (2011) 948-952. | [7] | S. Sasabe, Welding of 2000 series aluminium alloy materials, Welding Int. 26 (2012) 339-350. | [8] | K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino, J. Eckert, Tribological and corrosion properties of Al-12Si produced by selective laser melting, J. Mater.Res. 29 (2014) 2044-2054. | [9] | K.G. Basavakumar, P.G. Mukunda, M. Chakraborty, Impact toughness in Al-12Si and Al-12Si-3Cu cast alloys-Part 1: Effect of process variables and microstructure, Int. J.Impact Eng. 35 (2008) 199-205. | [10] | N. Kang, P. Coddet, H. Liao, T. Baur, C. Coddet, Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting, Appl. Surf.Sci. 378 (2016) 142-149. | [11] | D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Prog. Mater.Sci. 49 (2004) 389-410. | [12] | M. Zeren, Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, J. Mater.Process. Tech. 169 (2005) 292-298. | [13] | P. Sadeesh, M. Venkatesh Kannan, V. Rajkumar, P. Avinash, N. Arivazhagan, K. Devendranath Ramkumar, S. Narayanan, Studies on friction stir welding of AA 2024 and AA 6061 dissimilar metals, Proc. Eng. 75 (2014) 145-149. | [14] | A.G. Demir, B. Previtali, Multi-material selective laser melting of Fe/Al-12Si components, Manuf. Lett. 11 (2017) 8-11. | [15] | S.L. Sing, L.P. Lam, D.Q. Zhang, Z.H. Liu, C.K. Chua, Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy, Mater. Charact. 107 (2015) 220-227. | [16] | N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, Progress in additive manufacturing on new materials: a review, J. Mater.Sci. Technol. 35 (2018) 242-269. | [17] | D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371-392. | [18] | C. Yang, Y.J. Zhao, L.M. Kang, D.D. Li, W.W. Zhang, L.C. Zhang, High-strength silicon brass manufactured by selective laser melting, Mater. Lett. 210 (2018) 169-172. | [19] | S. Scudino, C. Unterdöfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, J. Eckert, Additive manufacturing of Cu-10Sn bronze, Mater. Lett. 156 (2015) 202-204. | [20] | J.L. Zhang, B. Song, Q.S. Wei, D. Bourell, Y.S. Shi, A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends, J. Mater.Sci. Technol. 35 (2019) 270-284. | [21] | K.G. Prashanth, S. Scudino, J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting, Acta Mater. 126 (2017) 25-35. | [22] | P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino, Selective laser melting of Al-Zn-Mg-Cu: Heat treatment, microstructure and mechanical properties, J. Alloys. Compd. 707 (2017) 287-290. | [23] | C.L. Tan, K.L. Zhou, W.Y. Ma, L. Min, Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture, Mater. Des. 155 (2018) 77-85. | [24] | Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, L.E. Loh, Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy, Mater. Charact. 94 (2014) 116-125. | [25] | K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, New developments of laser processing aluminium alloys via additive manufacturing technique, Phys. Proc. 12 (2011) 393-401. | [26] | J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D printing of high-strength aluminium alloys, Nature 549 (2017) 365-369. | [27] | P. Wang, C. Gammer, F. Brenne, K.G. Prashanth, R.G. Mendes, M.H. Rümmeli, T. Gemming, J. Eckert, S. Scudino, Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting,Mater. Sci. Eng. A 711 (2018) 562-570. | [28] | P. Wang, L. Deng, K.G. Prashanth, S. Pauly, J. Eckert, S. Scudino, Microstructure and mechanical properties of Al-Cu alloys fabricated by selective laser melting of powder mixtures, J. Alloys.Compd. 735 (2018) 2263-2266. | [29] | H. Zhang, H.H. Zhu, T. Qi, Z.H. Hu, X.Y. Zeng, Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties, Mater. Sci. Eng. A 656 (2016) 47-54. | [30] | O. Gharbi, D. Jiang, D.R. Feenstra, S.K. Kairy, Y. Wu, C.R. Hutchinson, N. Birbilis, On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting, Corros. Sci. 143 (2018) 93-106. | [31] | K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löer, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment, Mater.Sci. Eng. A 590 (2014) 153-160. | [32] | Y. Yang, Y. Chen, J.X. Zhang, X.H. Gu, P. Qin, N.W. Dai, X.P. Li, J.P. Kruth, L.C. Zhang, Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting, Mater. Des. 146 (2018) 239-248. | [33] | P. Qin, Y.J. Liu, T.B. Sercombe, Y.H. Li, C.W. Zhang, C.D. Cao, H.Q. Sun, L.C. Zhang, Improved corrosion resistance on selective laser melting produced Ti-5Cu alloy after heat treatment, ACS Biomater. Sci.Eng. 4 (2018) 2633-2642. | [34] | Y. Chen, J.X. Zhang, X.H. Gu, N.W. Dai, P. Qin, L.C. Zhang, Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes, J. Alloys.Compd. 747 (2018) 648-658. | [35] | S. Gao, C.S. Wu, G.K. Padhy, L. Shi, Evaluation of local strain distribution in ultrasonic enhanced Al 6061-T6 friction stir weld nugget by EBSD analysis, Mater. Des. 99 (2016) 135-144. | [36] | B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Strength and strain hardening of a selective laser melted AlSi10Mg alloy, Scr. Mater. 141 (2017) 45-49. | [37] | L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater. 61 (2013) 1809-1819. | [38] | M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, J. Van Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting, J. Mater. Process. Tech. 238 (2016) 437-445. | [39] | L.L. Parimi, A. Ravi G, D. Clark, M.M. Attallah, Microstructural and texture development in direct laser fabricated IN718, Mater. Charact. 89 (2014) 102-111. | [40] | W. Kurz, D.J. Fisher, Fundamentals of Solidification, third ed., Trans Tech Publications, Switzerland, 1989. | [41] | D.R. Askeland, P.P. Fulay, W.J. Wright, The Science and Engineering of Materials, Cengage Learning, United States, 2010. | [42] | D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, High power selective laser melting (HP SLM) of aluminum parts, Phys. Proc. 12 (2011) 271-278. | [43] | N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al-high Si alloys produced by selective laser melting, Mater. Des. 99 (2016) 120-126. | [44] | X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, T.B. Sercombe, A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility, Acta Mater. 95 (2015) 74-82. | [45] | Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater. 17 (2018) 63-71. | [46] | K.G. Prashanth, J. Eckert, Formation of metastable cellular microstructures in selective laser melted alloys, J. Alloys.Compd. 707 (2017) 27-34. | [47] | T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V.S. Sarma, On the Hall-Petch relationship in a nanostructured Al-Cu alloy, Mater. Sci. Eng. A 527 (2010) 7821-7825. | [48] | T. Kimura, T. Nakamoto, M. Mizuno, H. Araki, Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting, Mater. Sci. Eng. A 682 (2017) 593-602. | [49] | B. Hu, I.M. Richardson, Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds, Mater. Sci. Eng. A 459 (2007) 94-100. | [50] | H.J. Liu, H. Fujii, M. Maeda, K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, J. Mater. Process. Tech. 142 (2003) 692-696. | [51] | H. Liu, H. Fujii, M. Maeda, K. Nogi, Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy, J. Mater. Sci. Lett. 22 (2003) 441-444. | [52] | C. Leitão, I. Galvão, R.M. Leal, D.M. Rodrigues, Determination of local constitutive properties of aluminium friction stir welds using digital image correlation, Mater. Des. 33 (2012) 69-74. | [53] | M.P. Miles, B.J. Decker, T.W. Nelson, Formability and strength of friction-stir-welded aluminum sheets, Metall. Mater. Trans. A 35 (2004) 3461-3468. | [54] | X. Cao, W. Wallace, J.P. Immarigeon, C. Poon, Research and progress in laser welding of wrought aluminum alloys. II.Metallurgical microstructures, defects, and mechanical properties, Mater. Manuf. Proc. 18 (2003) 23-49. | [55] | G.E. Totten, D.S. MacKenzie, Handbook of Aluminum Vol. 1: Physical Metallurgy and Processes, CRC Press, New York, 2003. |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|