Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 36 Issue (0): 18-26    DOI: 10.1016/j.jmst.2019.03.047
Research Article Current Issue | Archive | Adv Search |
Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting
P. Wangab*(), C.S. Laoa, Z.W. Chena, Y.K. Liuc, H. Wangc, H. Wendrockb, J. Eckertde, S. Scudinob
a Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Nanhai Street 3688, 518060, Shenzhen, China
b Institute for Complex Materials, IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany
c Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Nanhai Street 3688, 518060, Shenzhen, P.R. China
d Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700, Leoben, Austria
e Department of Materials Science, Montanuniversität Leoben, Jahnstraße 12, A-8700, Leoben, Austria
Download:  HTML  PDF(2970KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An Al-12Si/Al-3.5Cu-1.5Mg-1Si bimetal with a good interface was successfully produced by selective laser melting (SLM). The SLM bimetal exhibits four successive zones along the building direction: an Al-12Si zone, an interfacial zone, a texture-strengthening zone and an Al-Cu-Mg-Si zone. The interfacial zone (< 0.2 mm thick) displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure, resulting in the lowest hardness of the four zones. The texture-strengthening zone (around 0.3 mm thick) shows a remarkable variation of the hardness and <001> fiber texture. Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction. Additionally, a strong <001> fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction. The bimetal exhibits a room temperature yield strength of 267 ± 10 MPa and an ultimate tensile strength of 369 ± 15 MPa with elongation of 2.6% ± 0.1%, revealing the potential of selective laser melting in manufacturing dissimilar materials.

Key words:  Selective laser melting      Aluminum alloys      Bimetals      Microstructure      Mechanical properties     
Received:  13 February 2019     
Corresponding Authors:  Wang P.     E-mail:  peiwang@szu.edu.cn

Cite this article: 

P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting. J. Mater. Sci. Technol., 2020, 36(0): 18-26.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.03.047     OR     https://www.jmst.org/EN/Y2020/V36/I0/18

Fig. 1.  Microstructures of the SLM Al-12Si/Al-Cu-Mg-Si bimetal: (a) overview of the bimetal with etching at low magnification (OM); (b) SEM micrograph of the Al-12Si part (inset: cellular microstructure at high magnification); (c) the interface of the base alloys (SEM); (d) Al-Cu-Mg-Si part (SEM). The positions of (b-d) are marked by ellipses in (a).
Fig. 2.  (a) EBSD inverse pole figure (IPF) map across the interface along the building direction. The spatial orientation with respect to the building direction (BD), scanning direction (SD) and transverse direction (TD), and the coloring of the orientation component along the biulding direction in the maps are given in the inset; (b) average grain size and relative content of <001> fiber texture as a function of the disctance from the interface.
Fig. 3.  Microhardness distribution and EDS line-scan profiles as a function of the distance from the interface (Ref-1: the SLM Al-12Si alloy using the laser power input of 190 W, scanning speed of 165 mm/s, hatch spacing of 0.08 mm and layer thickness of 0.04 mm; Ref-2: the SLM Al-12Si alloy using the power input of 320 W, scanning speed of 1455 mm/s, hatch spacing of 0.11 mm and layer thickness of 0.05 mm; Ref-3: the SLM Al-Cu-Mg-Si alloy using the laser power input of 190 W, scanning speed of 165 mm/s, hatch spacing of 0.08 mm and layer thickness of 0.04 mm).
Fig. 4.  Contour maps of the nano-hardness of zones I, II, III and IV.
Fig. 5.  (a) SEM images of the bimetal prepared by FIB, and STEM images of the FIB-prepared specimens at 0 mm distance from the interface (left inset) and 0.1 mm distance from the interface (right inset); (b) [001] HAADF-STEM images and corresponding EDS map of the position A at 0 mm distance from the interface; (c) [001] HAADF-STEM image at high magnification and corresponding high-resolution images (bottom-left inset) of the position B at 0.1 mm distance from the interface.
Fig. 6.  (a) Tensile true stress-true strain curves of the Al-12Si/Al-Cu-Mg-Si bimetal, the SLM Al-12Si alloy (Ref-2) and the SLM Al-Cu-Mg-Si alloy (Ref-3); (b) A summary of tensile strength (i.e., YS and UTS) versus elongation including our work and conventional bimetals (see Ref. [7]).
Materials type YS (MPa) UTS (MPa) Elongation (%)
Al-12Si/Al-Cu-Mg-Si bimetal 267 ± 10 369 ± 15 2.6 ± 0.1
Ref-2 208 ± 8 403 ± 4 5.6 ± 0.3
Ref-3 223 ± 2 372 ± 7 5.8 ± 0.5
Table 1  Comparison of the tensile properties of the SLM Al-12Si/Al-Cu-Mg-Si bimetal, the SLM Al-12Si alloy (Ref-2) and the SLM Al-Cu-Mg-Si alloy (Ref-3).
Fig. 7.  Fracture morphology of the SLM Al-12Si/Al-Cu-Mg-Si bimetal: (a) overview of the fracture site along the building direction (OM), (b) SEM micrograph of the fracture morphology.
[1] T.S. Parel, S.C. Wang, M.J. Starink, Hardening of an Al-Cu-Mg alloy containing Types I and II S phase precipitates, Mater. Des. 31 (2010) S2-S5.
[2] C.K.S. Moy, M. Weiss, J.H. Xia, G. Sha, S.P. Ringer, G. Ranzi, Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy, Mater. Sci. Eng. A 552 (2012) 48-60.
[3] S. Tailor, R.M. Mohanty, V.K. Sharma, P.R. Soni, A.V. Doub, Nanostructured 2024Al-SiCp composite coatings, Mater. Sci. Eng. A 552 (2012) 48-60.
[4] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys, Int. Mater.Rev. 54 (2009) 49-93.
[5] S.T. Amancio-Filho, S. Sheikhi, J.F. dos Santos, C. Bolfarini, Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4, J. Mater. Process.Tech. 206 (2008) 132-142.
[6] M. Aonuma, K. Nakata, Dissimilar Metal Joining of 2024 and 7075 Aluminium alloys to titanium alloys by friction stir welding, Mater. Trans. 52 (2011) 948-952.
[7] S. Sasabe, Welding of 2000 series aluminium alloy materials, Welding Int. 26 (2012) 339-350.
[8] K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino, J. Eckert, Tribological and corrosion properties of Al-12Si produced by selective laser melting, J. Mater.Res. 29 (2014) 2044-2054.
[9] K.G. Basavakumar, P.G. Mukunda, M. Chakraborty, Impact toughness in Al-12Si and Al-12Si-3Cu cast alloys-Part 1: Effect of process variables and microstructure, Int. J.Impact Eng. 35 (2008) 199-205.
[10] N. Kang, P. Coddet, H. Liao, T. Baur, C. Coddet, Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting, Appl. Surf.Sci. 378 (2016) 142-149.
[11] D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Prog. Mater.Sci. 49 (2004) 389-410.
[12] M. Zeren, Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, J. Mater.Process. Tech. 169 (2005) 292-298.
[13] P. Sadeesh, M. Venkatesh Kannan, V. Rajkumar, P. Avinash, N. Arivazhagan, K. Devendranath Ramkumar, S. Narayanan, Studies on friction stir welding of AA 2024 and AA 6061 dissimilar metals, Proc. Eng. 75 (2014) 145-149.
[14] A.G. Demir, B. Previtali, Multi-material selective laser melting of Fe/Al-12Si components, Manuf. Lett. 11 (2017) 8-11.
[15] S.L. Sing, L.P. Lam, D.Q. Zhang, Z.H. Liu, C.K. Chua, Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy, Mater. Charact. 107 (2015) 220-227.
[16] N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, Progress in additive manufacturing on new materials: a review, J. Mater.Sci. Technol. 35 (2018) 242-269.
[17] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371-392.
[18] C. Yang, Y.J. Zhao, L.M. Kang, D.D. Li, W.W. Zhang, L.C. Zhang, High-strength silicon brass manufactured by selective laser melting, Mater. Lett. 210 (2018) 169-172.
[19] S. Scudino, C. Unterdöfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, J. Eckert, Additive manufacturing of Cu-10Sn bronze, Mater. Lett. 156 (2015) 202-204.
[20] J.L. Zhang, B. Song, Q.S. Wei, D. Bourell, Y.S. Shi, A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends, J. Mater.Sci. Technol. 35 (2019) 270-284.
[21] K.G. Prashanth, S. Scudino, J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting, Acta Mater. 126 (2017) 25-35.
[22] P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino, Selective laser melting of Al-Zn-Mg-Cu: Heat treatment, microstructure and mechanical properties, J. Alloys. Compd. 707 (2017) 287-290.
[23] C.L. Tan, K.L. Zhou, W.Y. Ma, L. Min, Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture, Mater. Des. 155 (2018) 77-85.
[24] Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, L.E. Loh, Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy, Mater. Charact. 94 (2014) 116-125.
[25] K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, New developments of laser processing aluminium alloys via additive manufacturing technique, Phys. Proc. 12 (2011) 393-401.
[26] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D printing of high-strength aluminium alloys, Nature 549 (2017) 365-369.
[27] P. Wang, C. Gammer, F. Brenne, K.G. Prashanth, R.G. Mendes, M.H. Rümmeli, T. Gemming, J. Eckert, S. Scudino, Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting,Mater. Sci. Eng. A 711 (2018) 562-570.
[28] P. Wang, L. Deng, K.G. Prashanth, S. Pauly, J. Eckert, S. Scudino, Microstructure and mechanical properties of Al-Cu alloys fabricated by selective laser melting of powder mixtures, J. Alloys.Compd. 735 (2018) 2263-2266.
[29] H. Zhang, H.H. Zhu, T. Qi, Z.H. Hu, X.Y. Zeng, Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties, Mater. Sci. Eng. A 656 (2016) 47-54.
[30] O. Gharbi, D. Jiang, D.R. Feenstra, S.K. Kairy, Y. Wu, C.R. Hutchinson, N. Birbilis, On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting, Corros. Sci. 143 (2018) 93-106.
[31] K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löer, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment, Mater.Sci. Eng. A 590 (2014) 153-160.
[32] Y. Yang, Y. Chen, J.X. Zhang, X.H. Gu, P. Qin, N.W. Dai, X.P. Li, J.P. Kruth, L.C. Zhang, Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting, Mater. Des. 146 (2018) 239-248.
[33] P. Qin, Y.J. Liu, T.B. Sercombe, Y.H. Li, C.W. Zhang, C.D. Cao, H.Q. Sun, L.C. Zhang, Improved corrosion resistance on selective laser melting produced Ti-5Cu alloy after heat treatment, ACS Biomater. Sci.Eng. 4 (2018) 2633-2642.
[34] Y. Chen, J.X. Zhang, X.H. Gu, N.W. Dai, P. Qin, L.C. Zhang, Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes, J. Alloys.Compd. 747 (2018) 648-658.
[35] S. Gao, C.S. Wu, G.K. Padhy, L. Shi, Evaluation of local strain distribution in ultrasonic enhanced Al 6061-T6 friction stir weld nugget by EBSD analysis, Mater. Des. 99 (2016) 135-144.
[36] B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Strength and strain hardening of a selective laser melted AlSi10Mg alloy, Scr. Mater. 141 (2017) 45-49.
[37] L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater. 61 (2013) 1809-1819.
[38] M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, J. Van Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting, J. Mater. Process. Tech. 238 (2016) 437-445.
[39] L.L. Parimi, A. Ravi G, D. Clark, M.M. Attallah, Microstructural and texture development in direct laser fabricated IN718, Mater. Charact. 89 (2014) 102-111.
[40] W. Kurz, D.J. Fisher, Fundamentals of Solidification, third ed., Trans Tech Publications, Switzerland, 1989.
[41] D.R. Askeland, P.P. Fulay, W.J. Wright, The Science and Engineering of Materials, Cengage Learning, United States, 2010.
[42] D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, High power selective laser melting (HP SLM) of aluminum parts, Phys. Proc. 12 (2011) 271-278.
[43] N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al-high Si alloys produced by selective laser melting, Mater. Des. 99 (2016) 120-126.
[44] X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, T.B. Sercombe, A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility, Acta Mater. 95 (2015) 74-82.
[45] Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater. 17 (2018) 63-71.
[46] K.G. Prashanth, J. Eckert, Formation of metastable cellular microstructures in selective laser melted alloys, J. Alloys.Compd. 707 (2017) 27-34.
[47] T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V.S. Sarma, On the Hall-Petch relationship in a nanostructured Al-Cu alloy, Mater. Sci. Eng. A 527 (2010) 7821-7825.
[48] T. Kimura, T. Nakamoto, M. Mizuno, H. Araki, Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting, Mater. Sci. Eng. A 682 (2017) 593-602.
[49] B. Hu, I.M. Richardson, Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds, Mater. Sci. Eng. A 459 (2007) 94-100.
[50] H.J. Liu, H. Fujii, M. Maeda, K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, J. Mater. Process. Tech. 142 (2003) 692-696.
[51] H. Liu, H. Fujii, M. Maeda, K. Nogi, Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy, J. Mater. Sci. Lett. 22 (2003) 441-444.
[52] C. Leitão, I. Galvão, R.M. Leal, D.M. Rodrigues, Determination of local constitutive properties of aluminium friction stir welds using digital image correlation, Mater. Des. 33 (2012) 69-74.
[53] M.P. Miles, B.J. Decker, T.W. Nelson, Formability and strength of friction-stir-welded aluminum sheets, Metall. Mater. Trans. A 35 (2004) 3461-3468.
[54] X. Cao, W. Wallace, J.P. Immarigeon, C. Poon, Research and progress in laser welding of wrought aluminum alloys. II.Metallurgical microstructures, defects, and mechanical properties, Mater. Manuf. Proc. 18 (2003) 23-49.
[55] G.E. Totten, D.S. MacKenzie, Handbook of Aluminum Vol. 1: Physical Metallurgy and Processes, CRC Press, New York, 2003.
[1] Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening[J]. 材料科学与技术, 2020, 46(0): 44-49.
[2] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[3] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[4] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[5] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[6] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[7] Shaoning Geng, Ping Jiang, Xinyu Shao, Lingyu Guo, Xuesong Gao. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet[J]. 材料科学与技术, 2020, 46(0): 50-63.
[8] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[9] Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting[J]. 材料科学与技术, 2020, 42(0): 1-9.
[10] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
[11] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[12] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[13] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[14] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[15] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.