J. Mater. Sci. Technol. ›› 2021, Vol. 71: 55-66.DOI: 10.1016/j.jmst.2020.08.047
• Research Article • Previous Articles Next Articles
Qinchuan Hea,*(), Hejun Lib,*(
), Xuemin Yinb, Jinhua Lub
Received:
2020-05-29
Revised:
2020-06-06
Accepted:
2020-07-06
Published:
2021-04-30
Online:
2021-04-30
Contact:
Qinchuan He,Hejun Li
About author:
lihejun@nwpu.edu.cn(H. Li).Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites[J]. J. Mater. Sci. Technol., 2021, 71: 55-66.
Fig. 1. The morphology and microstructure of SiCnws-C/C-SiC composites and SiCnws: (a), (b) SiCnws-C/C-SiC composites; (c) SiCnws and corresponding EDS analysis; (d) XRD pattern of SiCnws; (e) low-resolution TEM image of SiCnws; (f) HRTEM and SAED image of SiCnws.
Fig. 3. The SEM images of S/P-C-0, S/P-C-0.4, S/P-C-1.4, S/P-C-2.4 composites and the schematic microstructure of all the composites: (a) S/P-C-0; (b) S/P-C-0.4; (c) S/P-C-1.4; (d) S/P-C-2.4; (e) the schematic microstructure of all the composites.
Composites | Density (g/cm3) | Porosity (%) | PyC thickness (μm) |
---|---|---|---|
S/P-C-0 | 1.88 | 12.34 | 0 |
S/P-C-0.4 | 2.01 | 10.96 | 0.4 |
S/P-C-1.4 | 2.1 | 9.94 | 1.4 |
S/P-C-2.4 | 2.19 | 8.79 | 2.4 |
Table 1 The density, porosity and PyC thickness of four composites.
Composites | Density (g/cm3) | Porosity (%) | PyC thickness (μm) |
---|---|---|---|
S/P-C-0 | 1.88 | 12.34 | 0 |
S/P-C-0.4 | 2.01 | 10.96 | 0.4 |
S/P-C-1.4 | 2.1 | 9.94 | 1.4 |
S/P-C-2.4 | 2.19 | 8.79 | 2.4 |
Fig. 4. High magnified SEM and TEM images of SiCnws/PyC core-shell structure of S/P-C-0.4, S/P-C-1.4 and S/P-C-2.4 composites: (a) S/P-C-0.4; (b) TEM image of S/P-C-0.4; (c) S/P-C-1.4; (d) S/P-C-2.4.
Fig. 7. The ablation surface appearance of S/P-C-0, S/P-C-0.4, S/P-C-1.4 and S/P-C-2.4 composites: (a) S/P-C-0; (b) S/P-C-0.4; (c) S/P-C-1.4; (d) S/P-C-2.4.
Fig. 10. The SEM images of ablation center morphologies of S/P-C-0, S/P-C-0.4, S/P-C-1.4 and S/P-C-2.4 composites: (a) S/P-C-0; (b) S/P-C-0.4; (c) S/P-C-1.4; (d) S/P-C-2.4.
Fig. 11. The cross-section of ablation center of S/P-C-0, S/P-C-0.4, S/P-C-1.4 and S/P-C-2.4 composites: (a) S/P-C-0; (b) S/P-C-0.4; (c) S/P-C-1.4; (d) S/P-C-2.4.
Fig. 12. The morphologies and EDS patterns of ablation center under ZrO2 coating of S/P-C-0, S/P-C-0.4, S/P-C-1.4 and S/P-C-2.4 composites: (a) S/P-C-0; (b) S/P-C-0.4; (c) high magnification of S/P-C-0.4; (d) corresponding EDS pattern of Fig.13 (c); (e) S/P-C-1.4; (f) S/P-C-2.4.
Fig. 13. The ablation morphologies of SiCnw/PyC core-shell structure of S/P-C-0.4, S/P-C-1.4 and S/P-C-2.4 composites: (a), (b) S/P-C-0.4; (c), (d) S/P-C-1.4; (e), (f) S/P-C-2.4.
[1] |
L. Liu, H.J. Li, K. Hao, X.H. Shi, J. Mater. Sci. Technol. 31 (2015) 345-354.
DOI URL |
[2] |
B.L. Ye, T.Q. Wen, D. Liu, Y.H. Chu, Corros. Sci. 153 (2019) 327-332.
DOI URL |
[3] |
X.R. Ren, T.Q. Shang, W.H. Wang, P.Z. Feng, L.T. Guo, J. Eur. Ceram. Soc. 39 (2019) 1955-1964.
DOI URL |
[4] |
B.L. Ye, T.Q. Wen, Y.H. Chu, J. Am. Ceram. Soc. 103 (2020) 500-507.
DOI URL |
[5] |
X. Yang, C. Feng, J. Alloys Comp. 632 (2015) 263-268.
DOI URL |
[6] |
K.Z. Li, J. Xie, H.J. Li, Q.G. Fu, J. Mater. Sci. Technol. 31 (2015) 77-82.
DOI URL |
[7] |
X.T. Shen, L. Liu, W. Li, K.Z. Li, Ceram. Int. 41 (2015) 11793-11803.
DOI URL |
[8] |
Z.G. Zhao, K.Z. Li, G. Kou, T.Y. Liu, Ceram. Int. 44 (2018) 23191-23201.
DOI URL |
[9] |
Y.J. Jia, X.Y. Yao, J.J. Sun, H.J. Li, Mater. Des. 129 (2017) 15-25.
DOI URL |
[10] |
M.Y. Zhang, K.Z. Li, X.H. Shi, W.L. Tan, Mater. Des. 122 (2017) 322-329.
DOI URL |
[11] |
C.X. Liu, L.X. Cao, J.X. Chen, L. Xue, Carbon 65 (2013) 196-205.
DOI URL |
[12] |
C.L. Yan, R.J. Liu, Y.B. Cao, C.R. Zhang, Corros. Sci. 86 (2014) 131-141.
DOI URL |
[13] |
X.R. Ren, W.H. Wang, P. Chen, H.A. Chu, P.Z. Feng, J. Eur. Ceram. Soc. 39 (2019) 4554-4564.
DOI URL |
[14] |
X.R. Ren, H.L. Shi, W.H. Wang, H.A. Chu, P. Chen, J. Eur. Ceram. Soc. 40 (2020) 203-211.
DOI URL |
[15] |
J. Xie, K.Z. Li, H.J. Li, Q.G. Fu, Ceram. Int. 39 (2013) 4171-4178.
DOI URL |
[16] |
H.J. Li, Q.C. He, C.C. Wang, J.H. Lu, Vacuum 164 (2019) 265-277.
DOI URL |
[17] |
Q.C. He, H.J. Li, C.C. Wang, H.S. Zhou, Ceram. Int. 45 (2019) 3767-3781.
DOI URL |
[18] |
Y.H. Chu, H.J. Li, Q.G. Fu, L.H. Qi, Corros. Sci. 70 (2013) 11-16.
DOI URL |
[19] |
Y.H. Chu, H.J. Li, Q.G. Fu, L.H. Qi, Corros. Sci. 70 (2013) 285-289.
DOI URL |
[20] |
G.B. Zheng, H. Mizuki, H. Sano, Y. Uchiyama, Carbon 46 (2008) 1808-1811.
DOI URL |
[21] |
J.C. Ren, Y.L. Zhang, J. Zhang, Y.Q. Fu, Ceram. Int. 45 (2019) 24294-24302.
DOI URL |
[22] |
Y.H. Chu, S.Y. Jing, D. Liu, J.C. Liu, Y.L. Zhao, Acta Mater. 162 (2019) 284-291.
DOI URL |
[23] |
X.M. Yin, H.J. Li, Y.Q. Fu, R.M. Yuan, Chem. Eng. J. 392 (2020), 124820.
DOI URL |
[24] |
Y.H. Chu, J.K. Chen, J.D. Tang, J. Alloys Comp. 755 (2018) 206-210.
DOI URL |
[25] |
H.J. Li, Y.J. Wang, Q.G. Fu, Y.H. Chu, J. Mater. Sci. Technol. 31 (2015) 70-76.
DOI URL |
[26] |
Y.H. Chu, S.Y. Jing, J.K. Chen, Ceram. Int. 44 (2018) 6681-6685.
DOI URL |
[27] |
L. Zhuang, Q.G. Fu, H.J. Li, Carbon 124 (2017) 675-684.
DOI URL |
[28] | L. Zhuang, Q.G. Fu, X. Yu, J. Eur, Ceram. Soc. 38 (2018) 2808-2814. |
[29] |
L. Zhuang, Q.G. Fu, W.H. Ma, Y.Y. Zhang, Corros. Sci. 148 (2019) 307-316.
DOI |
[30] |
Q.C. He, H.J. Li, X.M. Yin, C.C. Wang, Ceram. Int. 45 (2019) 20414-20426.
DOI URL |
[31] |
L. Liu, H.J. Li, W. Feng, X.H. Shi, Corros. Sci. 74 (2013) 159-167.
DOI URL |
[32] |
J.H. Lu, Q.C. He, Y.W. Wang, H.J. Li, J. Alloys Comp. 686 (2016) 823-830.
DOI URL |
[33] |
J.P. Zhang, Q.G. Fu, L. Wang, Mater. Des. 132 (2017) 552-558.
DOI URL |
[34] |
L. Liu, H.J. Li, X.H. Shi, Q.G. Fu, Ceram. Int. 40 (2014) 541-549.
DOI URL |
[35] |
M. Saito, S. Nagashima, A. Kato, J. Mater, Sci. Lett. 11 (1992) 373-376.
DOI URL |
[36] |
B. Feng, H.J. Li, Y.L. Zhang, L. Liu, Corros. Sci. 82 (2014) 27-35.
DOI URL |
[37] |
W.Y. Wang, Q.G. Fu, B.Y. Tan, J. Alloys. Comp. 726 (2017) 866-874.
DOI URL |
[38] |
H.M. Chen, S.E. Liao, X. Lu, N.N. Wang, Mater. Chem. Phys. 219 (2018) 258-262.
DOI URL |
[39] |
J. Xie, K.Z. Li, G.D. Sun, H. Li, Ceram. Int. 45 (2019) 11912-11919.
DOI URL |
[40] |
S.L. Wang, H. Li, M.S. Ren, Y.Z. Zuo, Ceram. Int. 43 (2017) 10661-10667.
DOI URL |
[41] |
D. Sciti, R. Savino, L. Silvestroni, J. Eur. Ceram. Soc. 32 (2012) 1837-1845.
DOI URL |
[42] |
Z.G. Zhao, K.Z. Li, W. Li, Q. Liu, Ceram. Int. 44 (2018) 7481-7490.
DOI URL |
[43] |
C.Q. Fang, X. Yang, K.J. He, L. Chen, J. Eur. Ceram. Soc. 39 (2019) 762-772.
DOI URL |
[44] |
T. Tian, W. Sun, X. Xiong, Y.L. Xu, J. Eur. Ceram. Soc. 39 (2019) 1696-1702.
DOI |
[1] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[2] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[3] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[4] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[5] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[6] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[7] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[8] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[9] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[10] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[11] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[12] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[13] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[14] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[15] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||