J. Mater. Sci. Technol. ›› 2020, Vol. 41: 56-67.DOI: 10.1016/j.jmst.2019.09.016
• Research Article • Previous Articles Next Articles
Yanjin Luab, Xiongcheng Xuc, Chunguang Yangd**(), Ling Rend, Kai Luoc**(
), Ke Yangd, Jinxin Linab*(
)
Received:
2019-06-03
Revised:
2019-08-18
Accepted:
2019-09-02
Published:
2020-03-15
Online:
2020-04-10
Contact:
Yang Chunguang,Luo Kai,Lin Jinxin
About author:
1The authors contributed equally to this work.
Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis[J]. J. Mater. Sci. Technol., 2020, 41: 56-67.
Gene | Forward primer sequence (5′-3′) | Reverse primer sequence (5′-3′) |
---|---|---|
GAPDH | CGGCAAGTTCAACGGCACAGTCAAGG | ACGACATACTCAGCACCAGCATCACC |
IL-6 | ATGGAGGAGGCACAGTCAGATG | AACCTAAGCAAGCGAGCAAGC |
IL-10 | CACCCACTTCCCAGTCAGC | AATCTGTCAGCAGTATGTTGTCC |
TNF-α | TGGCGTGTTCATCCGTTCTCTAC | CTACTTCAGCGTCTCGTGTGTTTC |
CCR7 | TACCTGGTTATCATCCGCACTC | TGGAAGACGACGAACACTACG |
MRC1 | GTTGACTGTGTTGTTGTGATTGG | GCCGTGGTTGGAGAGATAGG |
CTSK | TTCTCACATTCCTTCCTCAACAG | TCCAGCGTCTATCAGCACAG |
TRAP | ACGGCTACCTACGCTTTCAC | TTCCAGAGGCTTCCACATACG |
NF-κB | TATGGCTTCCCGCACTATGG | CTCCCTGTCGTCACTCTTGG |
NFATc1 | CCTTCCATCACCTTCCACCAG | CTCCTTACTCATAACCACTTTCGG |
Table 1 The sequences of specific primers used to detect the target genes.
Gene | Forward primer sequence (5′-3′) | Reverse primer sequence (5′-3′) |
---|---|---|
GAPDH | CGGCAAGTTCAACGGCACAGTCAAGG | ACGACATACTCAGCACCAGCATCACC |
IL-6 | ATGGAGGAGGCACAGTCAGATG | AACCTAAGCAAGCGAGCAAGC |
IL-10 | CACCCACTTCCCAGTCAGC | AATCTGTCAGCAGTATGTTGTCC |
TNF-α | TGGCGTGTTCATCCGTTCTCTAC | CTACTTCAGCGTCTCGTGTGTTTC |
CCR7 | TACCTGGTTATCATCCGCACTC | TGGAAGACGACGAACACTACG |
MRC1 | GTTGACTGTGTTGTTGTGATTGG | GCCGTGGTTGGAGAGATAGG |
CTSK | TTCTCACATTCCTTCCTCAACAG | TCCAGCGTCTATCAGCACAG |
TRAP | ACGGCTACCTACGCTTTCAC | TTCCAGAGGCTTCCACATACG |
NF-κB | TATGGCTTCCCGCACTATGG | CTCCCTGTCGTCACTCTTGG |
NFATc1 | CCTTCCATCACCTTCCACCAG | CTCCTTACTCATAACCACTTTCGG |
Fig. 1. SEM images of the CoCrW alloys with differing Cu contents: (a) CoCrW, (b) Co-2Cu, (c) Co-3Cu, (d) Co-4Cu; Grain boundary maps obtained from EBSD analysis: (e) CoCrW, (f) Co-2Cu, (g) Co-3Cu, (h) Co-4Cu; Grain diameter distribution obtained from EBSD analysis: (i) CoCrW, (j) Co-2Cu, (k) Co-3Cu, (l) Co-4Cu.
Fig. 6. Morphologies of the macrophages on the studied CoCrW based alloys after 24 h incubation imaged by fluorescence microscopy (the white arrows indicated the spindle-shaped cells; each “R” was a round cell; the white asterisks were those cells with a more extended appearance and more pseudopodia).
Fig. 7. Secretion levels of (a) TNF-α, (b) IL-6 and (c) IL-10 of RAW264.7 cells on the studied CoCrW based alloys after 3 d incubation assayed by ELISA (*p > 0.05, **p < 0.05).
Fig. 8. Gene expression of (a) CCR-7, (b) MRC-1, (c) TNF-α and (d) IL-6 and (e) IL-10 of RAW264.7 cells on the studied CoCrW based alloys after 7 d incubation assayed by RT-qPCR (*p >0.05, **p < 0.05).
Fig. 9. Morphologies of osteoclasts characterized as giant multinucleated cells on the studied CoCrW based alloys after 4 d incubation characterized by fluorescence microscopy (the white arrows indicated the osteoclast-like giant multinucleated cells).
Fig. 10. (a, b) NF-κB expression of osteoclasts on the studied CoCrW based alloys analyzed by western blot after 7 d of incubation and (c) NF-κB expression of osteoclast on the studied CoCrW based alloys stained by Alexa Fluor 488-conjugated secondary antibody and the nuclei were stained blue with DAPI after 7 d of culture (*p > 0.05, **p < 0.05).
Fig. 11. Gene expression of (a) NFATc1, (b) TRAP and (c) Cath-K of osteoclasts on studied CoCrW based alloys analyzed by RT-qPCR after 7 d of culture (*p > 0.05, **p < 0.05).
Fig. 12. Schematic diagram of Cu2+ ions released from CoCrW-xCu based artificial joint could decrease local in?ammatory responses by inhibiting activity of macrophages and osteoclasts.
|
[1] | Luxin Liang, Qianli Huang, Hong Wu, Hao He, Guanghua Lei, Dapeng Zhao, Kun Zhou. Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential [J]. J. Mater. Sci. Technol., 2022, 96(0): 167-178. |
[2] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[3] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[4] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[5] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[6] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[7] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[8] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[9] | Tian Wan, Kangjie Chu, Ju Fang, Chuanxin Zhong, Yiwen Zhang, Xiang Ge, Yonghui Ding, Fuzeng Ren. A high strength, wear and corrosion-resistant, antibacterial and biocompatible Nb-5 at.% Ag alloy for dental and orthopedic implants [J]. J. Mater. Sci. Technol., 2021, 80(0): 266-278. |
[10] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
[11] | Kai Chen, Xuenan Gu, Hui Sun, Hongyan Tang, Hongtao Yang, Xianghui Gong, Yubo Fan. Fluid-induced corrosion behavior of degradable zinc for stent application [J]. J. Mater. Sci. Technol., 2021, 91(0): 134-147. |
[12] | Wenshen Wang, Fenfen Li, Shibo Li, Yi Hu, Mengran Xu, Yuanyuan Zhang, Muhammad Imran Khan, Shaozhen Wang, Min Wu, Weiping Ding, Bensheng Qiu. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy [J]. J. Mater. Sci. Technol., 2021, 81(0): 77-87. |
[13] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[14] | Decheng Kong, Chaofang Dong, Xiaoqing Ni, Zhang Liang, Xiaogang Li. In-situ observation of asymmetrical deformation around inclusion in a heterogeneous additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 89(0): 133-140. |
[15] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||