J. Mater. Sci. Technol. ›› 2021, Vol. 81: 77-87.DOI: 10.1016/j.jmst.2020.11.058
• Research Article • Previous Articles Next Articles
Wenshen Wanga, Fenfen Lia,*(), Shibo Lia, Yi Hua, Mengran Xub, Yuanyuan Zhanga, Muhammad Imran Khana, Shaozhen Wanga, Min Wub, Weiping Dinga,*(
), Bensheng Qiua,*(
)
Received:
2020-07-10
Revised:
2020-10-27
Accepted:
2020-11-11
Published:
2021-01-07
Online:
2021-01-07
Contact:
Fenfen Li,Weiping Ding,Bensheng Qiu
About author:
bqiu@ustc.edu.cn (B. Qiu).Wenshen Wang, Fenfen Li, Shibo Li, Yi Hu, Mengran Xu, Yuanyuan Zhang, Muhammad Imran Khan, Shaozhen Wang, Min Wu, Weiping Ding, Bensheng Qiu. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy[J]. J. Mater. Sci. Technol., 2021, 81: 77-87.
Scheme. 1. Schematic of the preparation of SPIO-M2pep and the mechanism of SPIO-M2pep in M2 TAM-targeted and MRI-guided magnetic hyperthermia therapy of breast cancer.
Fig. 1. Characterization of SPIO and SPIO-M2pep nanoparticles. Transmission electron microscopy (TEM) images of (A) SPIO and (B) SPIO-M2pep nanoparticles with negative staining (inset: the size distribution analyses). (C) UV-vis absorption spectra. (D) Fluorescence emission spectra excited at a wavelength of 470 nm. (E) In vitro temperature increase profile of SPIO and SPIO-M2pep (6.0 μg μL -1) under an alternating magnetic field (2.56 kA m-1, 351 kHz). (F) The specific absorption rate values of SPIO (57.06 ± 0.78 W g -1) and SPIO-M2pep (56.03 ± 1.59 W g -1) under an AMF (2.56 kA m-1, 351 kHz).
Fig. 2. Cytotoxicity and targeting ability of SPIO-M2pep. (A) MTT analysis of SPIO or SPIO-M2pep on M2 macrophage cells. (B) MTT analysis of SPIO or SPIO-M2pep on 4T1 cells. (C) Prussian blue staining of M2 macrophage cells after different treatments. (D) Iron uptake in M2 macrophage cells treated with SPIO and SPIO-M2pep for different incubation times (25 μg mL -1, n = 3).
Fig. 3. In vitro magnetic hyperthermia therapy performance. (A) MTT analysis of M2 macrophage cells after treatment in a water bath for different times at 42 °C. (B) Fluorescence images of Hoechst/PI staining of M2 macrophage cells with different treatments under AMF (blue: Hoechst 33342 staining of nucleus, red: PI staining of dead cells, green: FITC signal from SPIO-M2pep). (C) Quantitative statistics of cell viability from cell fluorescence images after MHT treatment.
Fig. 4. MR imaging abilities of SPIO and SPIO-M2pep nanoparticles in vitro and in vivo. (A) T2-weighted MR images of SPIO and SPIO-M2pep nanoparticles dispersed in water at various concentrations of Fe. (B) Relaxivities (r2) of the SPIO and SPIO-M2pep nanoparticles measured at 3.0 T. (C) MR imaging of orthotopic breast tumor mice before and 30 min after injection of SPIO or SPIO-M2pep (tumor: yellow dashed line).
Fig. 5. M2 TAMs targeted MHT hinders cancer progression. (A) Infrared radiation (IR) thermal images of orthotopic breast tumor mice treated with MHT for 15 min. (B) Tumor growth curves in tumor-bearing mice treated with MHT after different treatment. (C) Tumor weights of different groups taken on day 14. (D) Representative pictures showing the lung metastases. E) The number of lung metastasis nodules of different groups (n = 5). (F) Body weight records of tumor-bearing mice with different treatment. (G) H&E analysis of the lung tissues collected from different groups.
Fig. 6. SPIO-M2pep-mediated MHT selectively reduced and repolarized M2 TAMs in tumor sites. (A) Representatives of the treatments of PBS, SPIO, and SPIO-M2pep in mice with or without AMF, depicting the F4/80 (APC) and CD206 (PE) expression on TAMs by flow cytometry. (B) Quantitative statistical analysis of F4/80+ and CD206+ macrophages from the flow cytometry results (mean ± SD; n = 3-4 per group). (C) Immunohistochemical staining of CD163+ macrophages from tumor tissues after treatment. (D) Quantitative statistical analysis of CD163+ macrophages from the immunohistochemistry imagies (mean ± SD; n = 5). (E) Immunofluorescence images of tumor sections stained with CD11b, CD86 and CD206.
Fig. 7. Remodeling of TIME. (A) CD3+ in CD45+ cells. (B) CD8+ in CD3+ cells. (C) CD4+ in CD3+ cells. (D) CD69+ in CD3+ cells. (E) CD69+ in CD8+ cells. (F) CD69+ in CD4+ cells. (G) IF assay of CD3, CD8, Granzyme B, TNF-α, IFN-γ, IL-10 and TGF-β.
[1] |
R.L. Siegel, K.D. Miller, A. Jemal, CA-Cancer J. Clin. 70 (2020) 7-30.
DOI URL |
[2] |
T. Chanmee, P. Ontong, K. Konno, N. Itano, Cancers 6 (2014) 1670-1690.
DOI URL |
[3] |
R. Noy, J.W. Pollard, Immunity 41 (2014) 49-61.
DOI URL |
[4] |
S. Epelman, K.J. Lavine, G.J. Randolph, Immunity 41 (2014) 21-35.
DOI PMID |
[5] |
S.K. Biswas, A. Mantovani, Nat. Immunol. 11 (2010) 889-896.
DOI URL |
[6] |
A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Nat. Rev. Clin. Oncol. 14 (2017) 399-416.
DOI PMID |
[7] |
X.Q. Tang, C.F. Mo, Y.S. Wang, D.D. Wei, H.Y. Xiao, Immunology 138 (2013)93-104.
DOI URL |
[8] | G.L. Beatty, D.A. Torigian, E.G. Chiorean, B. Saboury, A. Brothers, A. Alavi, A.B. Troxel, W.J. Sun, U.R. Teitelbaum, R.H. Vonderheide, P.J. O’Dwyer, Clin.CancerRes. 19 (2013) 6286-6295. |
[9] |
K.J. Pienta, J.P. Machiels, D. Schrijvers, B. Alekseev, M. Shkolnik, S.J. Crabb, S. Li, S. Seetharam, T.A. Puchalski, C. Takimoto, Y. Elsayed, F. Dawkins, J.S. de Bono, Invest. New Drug 31 (2013) 760-768.
DOI URL |
[10] |
M. Binnewies, E.W. Roberts, K. Kersten, V. Chan, D.F. Fearon, M. Merad, L.M. Coussens, D.I. Gabrilovich, S. Ostrand-Rosenberg, C.C. Hedrick, R.H. Vonderheide, M.J. Pittet, R.K. Jain, W.P. Zou, T.K. Howcroft, E.C. Woodhouse, R.A. Weinberg, M.F. Krummel, Nat. Med. 24 (2018) 541-550.
DOI PMID |
[11] |
F. Sallusto, M. Cella, C. Danieli, A. Lanzavecchia, J. Exp. Med. 182 (1995)389-400.
DOI URL |
[12] |
P.R. Crocker, J.C. Paulson, A. Varki, Nat. Rev. Immunol. 7 (2007) 255-266.
PMID |
[13] |
P.S. Low, W.A. Henne, D.D. Doorneweerd, Acc. Chem. Res. 41 (2008)120-129.
DOI URL |
[14] | S.S. Yu, C.M. Lau, W.J. Barham, H.M. Onishko, C.E. Nelson, H.M. Li, C.A. Smith, F.E. Yull, C.L. Duvall, T.D. Giorgio, J. Mol. Pharm. Org. Process Res. 10 (2013)975-987. |
[15] |
J. Conde, C. Bao, Y. Tan, D. Cui, E.R. Edelman, H.S. Azevedo, H.J. Byrne, N. Artzi, F. Tian, Adv. Funct. Mater. 25 (2015) 4183-4194.
PMID |
[16] |
M. Cieslewicz, J. Tang, J.L. Yu, H. Cao, M. Zavaljevski, K. Motoyama, A. Lieber, E.W. Raines, S.H. Pun, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 15919-15924.
DOI PMID |
[17] | L. Chen, Y. Wu, H.A. Wu, J.Z. Li, J. Xie, F.C. Zang, M. Ma, N. Gu, Y. Zhang, ActaBiomater. 96 (2019) 491-504. |
[18] | Q. Huang, S. Zhang, H. Zhang, Y. Han, H. Liu, F. Ren, Q. Sun, Z. Li, M. Gao, ACSNano 13 (2019) 1342-1353. |
[19] |
W.T. Sun, K. Ge, Y. Jin, Y. Han, H.S. Zhang, G.Q. Zhou, X.J. Yang, D.D. Liu, H.F. Liu, X.J. Liang, J.C. Zhang, ACS Nano 13 (2019) 7556-7567.
DOI URL |
[20] |
J. Otte, Eur. J. Pediatr. 147 (1988) 560-569.
PMID |
[21] |
R.D. Issels, Eur. J. Cancer 44 (2008) 2546-2554.
DOI PMID |
[22] |
M. Banobre-Lopez, A. Teijeiro, J. Rivas, Rep. Pract. Oncol. Radiother. 18 (2013)397-400.
DOI URL |
[23] |
P. Southern, Q.A. Pankhurst, Int. J. Hyperthermia 34 (2018) 671-686.
DOI URL |
[24] |
D. Ho, X.L. Sun, S.H. Sun, Acc. Chem. Res. 44 (2011) 875-882.
DOI URL |
[25] |
J. Li, Z. Feng, N. Gu, F. Yang, J. Mater. Sci. Technol. 63 (2021) 124-132.
DOI URL |
[26] |
H.W. Rong, H.H. Hu, J. Zhang, J.J. Wang, M. Zhang, G.W. Qin, Y.H. Zhang, X.F. Zhang, J. Mater. Sci. Technol. 35 (2019) 2485-2493.
DOI URL |
[27] |
Y.S. Wei, R.F. Liao, A.A. Mahmood, H.B. Xu, Q.B. Zhou, Acta Biomater. 55 (2017)194-203.
DOI URL |
[28] |
D. Yoo, J.H. Lee, T.H. Shin, J. Cheon, Acc. Chem. Res. 44 (2011) 863-874.
DOI URL |
[29] | I. Hilger, W.A. Kaiser, NanomedicineUK 7 (2012) 1443-1459. |
[30] |
Y.L. Zhang, Q.Q. Ni, C.L. Xu, B. Wan, Y.Y. Geng, G. Zheng, Z.L. Yang, J. Tao, Y. Zhao, J. Wen, J.J. Zhang, S.J. Wang, Y.X. Tang, Y.J. Li, Q.R. Zhang, L. Liu, Z.G. Teng, G.M. Lu, ACS Appl. Mater. Interfaces 11 (2019) 3654-3665.
DOI URL |
[31] |
M. Ognjanovic, M. Radovic, M. Mirkovic, Z. Prijovic, M.D. Morales, M. Ceh, S. Vranjes-Duric, B. Antic, ACS Appl. Mater. Interfaces 11 (2019) 41109-41117.
DOI URL |
[32] |
Y. Chao, G.B. Chen, C. Liang, J. Xu, Z.L. Dong, X. Han, C. Wang, Z. Liu, Nano Lett. 19 (2019) 4287-4296.
DOI PMID |
[33] |
Y.Y. Huang, C.M. Mei, Y.Q. Tian, T.Q. Nie, Z. Liu, T.F. Chen, NPG Asia Mater. 10 (2018) 1002-1015.
DOI URL |
[34] |
S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi, A. Shaw, J.S. Pajarinen, H. Nejadnik, S. Goodman, M. Moseley, L.M. Coussens, H.E. Daldrup-Link, Nat. Nanotechnol. 11 (2016) 986-994.
DOI PMID |
[35] |
A. Laskar, J. Eilertsen, W. Li, X.M. Yuan, Biochem. Bioph. Res. Co. 441 (2013)737-742.
DOI PMID |
[36] |
J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Nat. Mater. 3 (2004) 891-895.
DOI URL |
[37] | W.W. Yu, J.C. Falkner, C.T. Yavuz, V.L. Colvin, Chem. Commun. (2004)2306-2307. |
[38] |
Y. Liu, T. Chen, C.C. Wu, L.P. Qiu, R. Hu, J. Li, S. Cansiz, L.Q. Zhang, C. Cui, G.Z. Zhu, M.X. You, T. Zhang, W.H. Tan, J. Am. Chem. Soc. 136 (2014) 12552-12555.
DOI URL |
[39] |
K. Kobayashi, L.D. Hernandez, J.E. Galan, C.A. Janeway, R. Medzhitov, R.A. Flavell, Cell 110 (2002) 191-202.
PMID |
[40] |
T. Kimura, S. Nada, N. Takegahara, T. Okuno, S. Nojima, S. Kang, D. Ito, K. Morimoto, T. Hosokawa, Y. Hayama, Y. Mitsui, N. Sakurai, H. Sarashina-Kida, M. Nishide, Y. Maeda, H. Takamatsu, D. Okuzaki, M. Yamada, M. Okada, A. Kumanogoh, Nat. Commun. 7 (2016) 13130.
DOI URL |
[41] |
D. Yang, X.C. Pang, Y.J. He, Y.Q. Wang, G.X. Chen, W.Z. Wang, Z.Q. Lin, Angew. Chemie Int. Edit. 54 (2015) 12091-12096.
DOI URL |
[42] |
Z.Q. Zhang, S.C. Song, Biomaterials 106 (2016) 13-23.
DOI URL |
[43] |
Y. Hu, H.R. Zhang, L. Dong, M.R. Xu, L. Zhang, W.P. Ding, J.Q. Zhang, J. Lin, Y.J. Zhang, B.S. Qiu, P.F. Wei, L.P. Wen, Nanoscale 11 (2019) 11789-11807.
DOI URL |
[44] | J.T. Jang, H. Nah, J.H. Lee, S.H. Moon, M.G. Kim, J. Cheon, Angew. Chemie Int.Ed. English 48 (2009) 1234-1238. |
[45] |
F.F. Li, D.B. Zhi, Y.F. Luo, J.Q. Zhang, X. Nan, Y.J. Zhang, W. Zhou, B.S. Qiu, L.P. Wen, G.L. Liang, Nanoscale 8 (2016) 12826-12833.
DOI URL |
[46] | M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.J. Weinmann, Invest.Radiol. 40 (2005) 715-724. |
[47] |
J.W. Pollard, Nat. Rev. Cancer 4 (2004) 71-78.
DOI URL |
[48] | P.F. Zhao, W.M. Yin, A.H. Wu, Y.S. Tang, J.Y. Wang, Z.Z. Pan, T.T. Lin, M. Zhang, B.F. Chen, Y.F. Duan, Y.Z. Huang, Adv. Funct.Mater. 27 (2017). |
[49] | M. Weber, P. Moebius, M. Buttner-Herold, K. Amann, R. Preidl, F.W. Neukam, F. Wehrhan, Br. J. Cancer Suppl. 113 (2015) 510-519. |
[50] |
L. Lynch, M. Nowak, B. Varghese, J. Clark, A.E. Hogan, V. Toxavidis, S.P. Balk, D. O’Shea, C. O’Farrelly, M.A. Exley, Immunity 37 (2012) 574-587.
DOI URL |
[51] |
D. Li, M. Zhang, F. Xu, Y. Chen, B. Chen, Y. Chang, H. Zhong, H. Jin, Y. Huang, Acta Pharm. Sin. B 8 (2018) 74-84.
DOI URL |
[52] |
K. Li, L. Lu, C.C. Xue, J. Liu, Y. He, J. Zhou, Z.Z.L. Xia, L.L. Dai, Z. Luo, Y.L. Mao, K.Y. Cai, Nanoscale 12 (2020) 130-144.
DOI URL |
[53] | L.Q. Liu, Y. Wang, X. Guo, J.Y. Zhao, S.B. Zhou, Small 16 (2020). |
[54] |
X. Liu, J. Zheng, W. Sun, X. Zhao, Y. Li, N. Gong, Y. Wang, X. Ma, T. Zhang, L.Y. Zhao, Y. Hou, Z. Wu, Y. Du, H. Fan, J. Tian, X.J. Liang, ACS Nano 13 (2019)8811-8825.
DOI URL |
[55] |
S. Toraya-Brown, M.R. Sheen, P.S. Zhang, L. Chen, J.R. Baird, E. Demidenko, M.J. Turk, P.J. Hoopes, J.R. Conejo-Garcia, S. Fiering, Nanomedicine 10 (2014)1273-1285.
DOI PMID |
[56] |
X.D. Zhan, L.X. Jia, Y.M. Niu, H.X. Qi, X.P. Chen, Q.W. Zhang, J.F. Zhang, Y.T. Wang, L. Dong, C.M. Wang, Biomaterials 35 (2014) 10046-10057.
DOI URL |
[57] |
D.A. Thomas, J. Massague, Cancer Cell 8 (2005) 369-380.
PMID |
[58] |
A. Taylor, J. Verhagen, K. Blaser, M. Akdis, C.A. Akdis, Immunology 117 (2006)433-442.
DOI URL |
[1] | Huawei Rong, Haihua Hu, Jian Zhang, Jianjun Wang, Mu Zhang, Gaowu Qin, Yanhui Zhang, Xuefeng Zhang. Wüstite-type Fe0.78Mn0.22O nanocubes: A new class for high-sensitive T2-weighted magnetic resonance imaging agent [J]. J. Mater. Sci. Technol., 2019, 35(11): 2485-2493. |
[2] | Cindy Elschner, Carolin Noack, Carolin Preiß, ler, Andreas Krause, Ulrich Scheler, Ute Hempel. In vitro Response of Human Mesenchymal Stromal Cells to Titanium Coated Peek Films and Their Suitability for Magnetic Resonance Imaging [J]. J. Mater. Sci. Technol., 2015, 31(5): 427-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||