J. Mater. Sci. Technol. ›› 2020, Vol. 51: 151-160.DOI: 10.1016/j.jmst.2020.03.021
• Research Article • Previous Articles Next Articles
Haifeng Chena,*(), Yizhou Shenb,*(
), Zhaoru Heb, Zhengwei Wub, Xinyu Xiea,b
Received:
2019-11-18
Revised:
2019-12-17
Accepted:
2020-01-28
Published:
2020-08-15
Online:
2020-08-11
Contact:
Haifeng Chen,Yizhou Shen
Haifeng Chen, Yizhou Shen, Zhaoru He, Zhengwei Wu, Xinyu Xie. Facilely fabricating superhydrophobic coated-mesh materials for effective oil-water separation: Effect of mesh size towards various organic liquids[J]. J. Mater. Sci. Technol., 2020, 51: 151-160.
Fig. 3. (a-c) 3-Dimentional morphologies of smooth, PDMS-coated, and superhydrophobic F-SiO2/PDMS@PET meshes. (d-f) Corresponding 2-Dimentional surface morphologies. (g-i) Roughness curves obtained along the diagonal direction on 2-Dimensional surface morphologies.
Fig. 4. SEM images of superhydrophobic F-SiO2/PDMS@PET meshes, (a) d = 0.25 mm; (b) d = 0.12 mm; (c) d = 0.075 mm; (d) d = 0.058 mm; (e) d = 0.048 mm; (f) d = 0.038 mm. Higher-magnification images of superhydrophobic F-SiO2/PDMS@PET meshes with d = 0.038 mm (g) and uncoated PET meshes with d = 0.12 mm (h).
Fig. 6. (a) XPS full spectrum of superhydrophobic F-SiO2/PDMS@PET meshes, PDMS-coated PET meshes and uncoated PET meshes. (b-d) High resolution spectra of each element.
Fig. 7. (a) Static water CA on superhydrophobic F-SiO2/PDMS@PET mesh. (b) Superhydrophobic F-SiO2/PDMS@PET mesh being immersed in water. (c, d) Water droplets on the superhydrophobic F-SiO2/PDMS@PET mesh and uncoated PET mesh. (e) Superhydrophobic F-SiO2/PDMS@PET meshes floating on water surface. The related videos (Video S1-S3) are provided in the supporting materials.
Fig. 8. Water CA on the superhydrophobic F-SiO2/PDMS@PET meshes with six different pore sizes (a) 0.25 mm; (b) 0.12 mm; (c) 0.075 mm; (d) 0.058 mm; (e) 0.048 mm; (f) 0.038 mm.
Fig. 10. Separation efficiency of (a) kerosene-water and (b) trichloromethane-water mixtures on superhydrophobic F-SiO2/PDMS@PET meshes with different pore sizes.
Fig. 11. Separation efficiency of oil with different surface energy on the superhydrophobic PET mesh with pore size of 0.048 mm. The related separation process is clearly shown in Video S4 of supporting materials.
[1] | G. Guo, L. Liu, Z. Dang, W. Fang , Nano, 12 ( 2017), Article 1730001. |
[2] | S. Huang, R.H. Ras, X. Tian , Curr. Opin. Colloid Interface Sci., 36(2018), pp. 90-109. |
[3] | T.A. Otitoju, A.L. Ahmad, B.S. Ooi, J. Water Process. Eng., 14(2016), pp. 41-59. |
[4] | A. Fakhru’l-Razi, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, Z.Z. Abidin, J. Hazard. Mater., 170(2009), pp. 530-551. |
[5] | B. Wang, W. Liang, Z. Guo, W. Liu , Chem. Soc. Rev., 44(2015), pp. 336-361. |
[6] | M. Padaki, R.S. Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail , Desalination, 357(2015), pp. 197-207. |
[7] | H. Shi, Y. He, Y. Pan, H. Di, G. Zeng, L. Zhang, C. Zhang, J. Membr. Sci., 506(2016), pp. 60-70. |
[8] | J. Cui, Z. Zhou, A. Xie, M. Meng, Y. Cui, S. Liu, J. Lu, S. Zhou, Y. Yan, H. Dong , Sep. Purif. Technol., 209(2019), pp. 434-442. |
[9] | X. Li, M. Wang, C. Wang, C. Cheng, X. Wang , ACS Appl. Mater. Interfaces, 6(2014), pp. 15272-15282. |
[10] | H. Kang, Z. Cheng, H. Lai, H. Ma, Y. Liu, X. Mai, Y. Wang, Q. Shao, L. Xiang, X. Guo, Z. Guo , Sep. Purif. Technol., 201(2018), pp. 193-204. |
[11] | H. Yang, J. Pi, K. Liao, H. Huang, Q. Wu, X. Huang, Z. Xu , ACS Appl. Mater. Interfaces, 6(2014), pp. 12566-12572. |
[12] | H. Wang, H. Zhou, H. Niu, J. Zhang, Y. Du, T. Lin, Adv. Mater. Interfaces, 2 ( 2015), Article 1400506. |
[13] | E.J. Lee, B.J. Deka, A.K. An, J. Membr. Sci., 573(2019), pp. 570-578. |
[14] | Z. Xi, Y. Xu, L. Zhu, Y. Wang, B. Zhu, J. Membr. Sci., 327(2009), pp. 244-253. |
[15] | Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, J. Mater. Chem. A , 2(2014), pp. 2445-2460. |
[16] | F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, L. Jiang , Adv. Mater., 25(2013), pp. 4192-4198. |
[17] | M. Tao, L. Xue, F. Liu, L. Jiang , Adv. Mater., 26(2014), pp. 2943-2948. |
[18] | T. Zhao, D. Zhang, C. Yu, L. Jiang , ACS Appl. Mater. Interfaces, 8(2016), pp. 24186-24191. |
[19] | J. Fan, Y. Song, S. Wang, J. Meng, G. Yang, X. Guo, L. Feng, L. Jiang , Adv. Funct. Mater., 25(2015), pp. 5368-5375. |
[20] | M.H. Tai, P. Gao, B.Y.L. Tan, D.D. Sun, J.O. Leckie, ACS Appl. Mater. Interfaces, 6(2014), pp. 9393-9401. |
[21] | J. Kong, K. Li , Sep. Purif. Technol., 16(1999), pp. 83-93. |
[22] | X. Li, M. Wang, C. Wang, C. Cheng, X. Wang , ACS Appl. Mater. Interfaces, 6(2014), pp. 15272-15282. |
[23] | L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, J. Zhai, J. Mater. Chem. A, 3(2015), pp. 1279-1286. |
[24] | J. Zhang, S. Seeger , Adv. Funct. Mater., 21(2011), pp. 4699-4704. |
[25] | Z.S. Huang, Y.Y. Quan, J.J. Mao, Y.L. Wang, Y.K. Lai, J. Zheng, Z. Chen, K. Wei, H.Q. Li , Chem. Eng. J., 358(2019), pp. 1610-1619. |
[26] | X.L. Dong, S.W. Gao, J.Y. Huang, J.Y. Huang, S.H. Li, T.X. Zhu, Y. Cheng, Y. Zhao, Z. Chen, Y.K. Lai, J. Mater. Chem. A, 7(2019), pp. 2122-2128. |
[27] | S.W. Gao, X.L. Dong, J.Y. Huang, J.N. Dong, Y. Cheng, Z. Chen, Y.K. Lai , Appl. Surf. Sci., 459(2018), pp. 512-519. |
[28] | Y. Liu, Y. Zhang, X. Fu, H. Sun , ACS Appl. Mater. Interfaces, 7(2015), pp. 20930-20936. |
[29] | Z. Xu, D. Jiang, Z. Wei, J. Chen, J. Jing , Appl. Surf. Sci., 427(2018), pp. 253-261. |
[30] | X. Gao, L.P. Xu, Z. Xue, L. Feng, Y. Wen, S. Wang, X. Zhang , Adv. Mater., 26(2014), pp. 1771-1775. |
[31] | F. Wang, S. Lei, Y. Xu, J. Ou , Chemphyschem, 16(2015), pp. 2237-2243. |
[32] | W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Lin, L. Jiang , Adv. Mater., 25(2013), pp. 2071-2076. |
[33] | K.L. Chen, W.W. Gou, X.M. Wang, C.J. Zeng, F.Q. Ge, Z.J. Dong, C.X. Wang , ACS Sustain. Chem. Eng., 6(2018), pp. 16616-16628. |
[34] | J. Zhang, W. Huang, Y. Han , Macromol. Rapid Commun., 27(2006), pp. 804-808. |
[35] | L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang , Angew. Chem. Int. Ed., 43(2004), pp. 2012-2014. |
[36] | C. Wang, T. Yao, J. Wu, C. Ma, Z. Fan, Z. Wang, Y. Cheng, Q. Lin, B. Yang , ACS Appl. Mater. Interfaces, 1(2009), pp. 2613-2617. |
[37] | Q. Zhu, Q. Pan, F. Liu, J. Phys. Chem. C, 115(2011), pp. 17464-17470. |
[38] | S. Wang, Y. Song, L. Jiang , Nanotechnology, 18 ( 2006),Article 015103. |
[39] | M. Li, J. Xu, Q. Lu, J. Mater. Chem., 17(2007), pp. 4772-4776. |
[40] | Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang , Adv. Mater., 23(2011), pp. 4270-4273. |
[41] | C. Xue, P. Ji, P. Zhang, Y. Li, S. Jia , Appl. Surf. Sci., 284(2013), pp. 464-471. |
[42] | X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men, B. Ge , ACS Appl. Mater. Interfaces, 5(2013), pp. 7208-7214. |
[43] | M. Zhang, C. Wang, S. Wang, J. Li , Carbohydr. Polym., 97(2013), pp. 59-64. |
[44] | B. Cortese, D. Caschera, F. Federici, G.M. Ingo, G. Gigli, J. Mater. Chem. A, 2(2014), pp. 6781-6789. |
[45] | X. Liu, L. Ge, W. Li, X. Wang, F. Li , ACS Appl. Mater. Interfaces, 7(2014), pp. 791-800. |
[46] | J. Zhou, Q. Chang, Y. Wang, J. Wang, G. Meng , Sep. Purif. Technol., 75(2010), pp. 243-248. |
[47] | L. Zhang, Z. Zhang, P. Wang , NPG Asia Mater., 4(2012), p. e8. |
[48] | J. Li, L. Shi, Y. Chen, Y. Zhang, Z. Guo, B. Su, W. Liu, J. Mater. Chem., 22(2012), pp. 9774-9781. |
[49] | Z. Chu, Y. Feng, S. Seeger , Angew. Chem. Int. Ed., 54(2015), pp. 2328-2338. |
[50] | P.K. Roy, S.K. Ujjain, S. Dattatreya, S. Kumar, R. Pant, K. Khare , Appl. Phys. A-Mater.Sci. Process., 125(2019), p. 535. |
[51] | Y. Wu, Y. Shen, J. Tao, Z. He, Y. Xie, H. Chen, M. Jin, W. Hou , New J. Chem., 42(2018), pp. 18208-18216. |
[52] | Y. Shen, Y. Wu, J. Tao, C. Zhu, H. Chen, Z. Wu, Y. Xie , ACS Appl. Mater. Interfaces, 11(2018), pp. 3590-3598. |
[1] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[2] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[3] | E. Vazirinasab, G. Momen, R. Jafari. A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite [J]. J. Mater. Sci. Technol., 2021, 66(0): 213-225. |
[4] | Jinpeng Li, Huarui Zhang, Ming Gao, Qingling Li, Weidong Bian, Yongshuang Cui, Tongxiang Tao, Hu Zhang. Mechanisms of yttrium on the wettability, surface tension and interactions between Ni-20Co-20Cr-10Al-ξY alloys and MgO ceramics [J]. J. Mater. Sci. Technol., 2021, 70(0): 39-48. |
[5] | Fandi Meng, Li Liu, Yu Cui, Fuhui Wang. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 165-175. |
[6] | Binbin Zhang, Jizhou Duan, Yanliang Huang, Baorong Hou. Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness [J]. J. Mater. Sci. Technol., 2021, 71(0): 1-11. |
[7] | Rui Liu, Li Liu, Wenliang Tian, Yu Cui, Fuhui Wang. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 233-240. |
[8] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[9] | Wenhui Yao, Liang Wu, Guangsheng Huang, Bin Jiang, Andrej Atrens, Fusheng Pan. Superhydrophobic coatings for corrosion protection of magnesium alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 100-118. |
[10] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
[11] | Jingchen Li, Liangliang Wei, Jian He, Hao Chen, Hongbo Guo. The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 63-72. |
[12] | Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating [J]. J. Mater. Sci. Technol., 2020, 53(0): 19-31. |
[13] | Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane [J]. J. Mater. Sci. Technol., 2020, 45(0): 70-83. |
[14] | Lin Chen, Mingyu Hu, Jun Guo, Xiaoyu Chong, Jing Feng. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase [J]. J. Mater. Sci. Technol., 2020, 52(0): 20-28. |
[15] | C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films [J]. J. Mater. Sci. Technol., 2020, 37(0): 85-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||