J. Mater. Sci. Technol. ›› 2020, Vol. 53: 19-31.DOI: 10.1016/j.jmst.2020.03.030
• Research Article • Previous Articles Next Articles
Enkang Haoa,b, Yulong Ana,b,*(), Xia Liuc, Yijing Wanga,b, Huidi Zhoua,b, Fengyuan Yana,b,*(
)
Received:
2019-11-25
Revised:
2020-02-29
Accepted:
2020-03-20
Published:
2020-09-15
Online:
2020-09-21
Contact:
Yulong An,Fengyuan Yan
Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating[J]. J. Mater. Sci. Technol., 2020, 53: 19-31.
Parameters | Value |
---|---|
Oxygen flow (m3/h) | 19.8 |
Natural gas flow (m3/h) | 13.5 |
Air flow (m3/h) | 18.7 |
Powder feed rate (g/min) | 25 |
Gun speed (mm/s) | 800 |
Spraying distance (cm) | 30 |
Table 1 Parameters for HVOF spraying process.
Parameters | Value |
---|---|
Oxygen flow (m3/h) | 19.8 |
Natural gas flow (m3/h) | 13.5 |
Air flow (m3/h) | 18.7 |
Powder feed rate (g/min) | 25 |
Gun speed (mm/s) | 800 |
Spraying distance (cm) | 30 |
NaCl | Na2SO4 | MgCl2 | CaCl2 | SrCl2 | KCl | NaHCO3 | KBr | H3BO3 | NaF |
---|---|---|---|---|---|---|---|---|---|
24.53 | 4.09 | 5.20 | 1.16 | 0.025 | 0.695 | 0.201 | 0.101 | 0.027 | 0.003 |
Table 2 The chemical composition (g/L) of the artificial seawater*.
NaCl | Na2SO4 | MgCl2 | CaCl2 | SrCl2 | KCl | NaHCO3 | KBr | H3BO3 | NaF |
---|---|---|---|---|---|---|---|---|---|
24.53 | 4.09 | 5.20 | 1.16 | 0.025 | 0.695 | 0.201 | 0.101 | 0.027 | 0.003 |
Fig. 1. SEM image and XRD pattern (a) as well as particles size (b) of the as-received powders; SEM image and XRD pattern (c) as well as the nano-indentation curve (d) of as-sprayed coating.
Specimens | Mechanical properties | |||
---|---|---|---|---|
HIT (GPa) | E* (GPa) | Estr | Rdef | |
S600 | 12.84 | 288.07 | 0.04457 | 0.02551 |
S800 | 15.82 | 293.53 | 0.05390 | 0.04595 |
S1000 | 22.24 | 281.50 | 0.07964 | 0.1388 |
Table 3 The parameters of nano-indentation curves.
Specimens | Mechanical properties | |||
---|---|---|---|---|
HIT (GPa) | E* (GPa) | Estr | Rdef | |
S600 | 12.84 | 288.07 | 0.04457 | 0.02551 |
S800 | 15.82 | 293.53 | 0.05390 | 0.04595 |
S1000 | 22.24 | 281.50 | 0.07964 | 0.1388 |
Specimens | EIS fitting results | ||||||
---|---|---|---|---|---|---|---|
Rs (? cm2) | Rf /104 (? cm2) | CPE-T1 (?-1 cm-2·sn) | CPE-P1 | Rct /106 (? cm2) | CPE-T2 (?-1 cm-2·sn) | CPE-P2 | |
SRT | 113.9 | 1.668 | 3.200 × 10-6 | 0.8756 | 4.661 | 1.336 × 10-6 | 0.6666 |
S600 | 165.4 | 23.78 | 1.546 × 10-7 | 0.9163 | 32.37 | 1.258 × 10-6 | 0.6214 |
S800 | 113.5 | 65.01 | 1.953 × 10-8 | 0.9672 | 240.9 | 4.647 × 10-8 | 0.3661 |
S1000 | 58.31 | 94.64 | 3.295 × 10-9 | 0.9459 | 2.278 × 103 | 6.672 × 10-9 | 0.8825 |
Table 4 The EIS fitting results of the specimens.
Specimens | EIS fitting results | ||||||
---|---|---|---|---|---|---|---|
Rs (? cm2) | Rf /104 (? cm2) | CPE-T1 (?-1 cm-2·sn) | CPE-P1 | Rct /106 (? cm2) | CPE-T2 (?-1 cm-2·sn) | CPE-P2 | |
SRT | 113.9 | 1.668 | 3.200 × 10-6 | 0.8756 | 4.661 | 1.336 × 10-6 | 0.6666 |
S600 | 165.4 | 23.78 | 1.546 × 10-7 | 0.9163 | 32.37 | 1.258 × 10-6 | 0.6214 |
S800 | 113.5 | 65.01 | 1.953 × 10-8 | 0.9672 | 240.9 | 4.647 × 10-8 | 0.3661 |
S1000 | 58.31 | 94.64 | 3.295 × 10-9 | 0.9459 | 2.278 × 103 | 6.672 × 10-9 | 0.8825 |
Fig. 6. Cumulative volume loss and cavitation erosion rate as a function of time for the specimens after cavitation erosion in seawater: cumulative volume loss (a), cavitation erosion rate (b).
Fig. 12. EBSD maps for SRT and S800: 0-1 μm grains of SRT (a) and S800 (b); grain size distribution (c); IPF maps of SRT (d) and S800 (e); misorientation angle distribution (f).
Area for analysis | Ni | Co | Cr | Al | Ta | Y | O |
---|---|---|---|---|---|---|---|
Spectra 1 | 38.83 | 18.78 | 19.00 | 13.53 | 1.41 | 0.21 | 8.23 |
Spectra 2 | 33.75 | 16.92 | 17.71 | 11.93 | 1.09 | 0.21 | 18.40 |
Spectra 3 | 38.02 | 19.31 | 18.07 | 13. 25 | 1.26 | 0.25 | 9.84 |
Spectra 4 | 4.29 | 5.62 | 15.36 | 8.57 | 1.12 | 0.26 | 64.79 |
Table 5 EDS results of the region in Fig. 13(a) (element composition: mass fraction, %).
Area for analysis | Ni | Co | Cr | Al | Ta | Y | O |
---|---|---|---|---|---|---|---|
Spectra 1 | 38.83 | 18.78 | 19.00 | 13.53 | 1.41 | 0.21 | 8.23 |
Spectra 2 | 33.75 | 16.92 | 17.71 | 11.93 | 1.09 | 0.21 | 18.40 |
Spectra 3 | 38.02 | 19.31 | 18.07 | 13. 25 | 1.26 | 0.25 | 9.84 |
Spectra 4 | 4.29 | 5.62 | 15.36 | 8.57 | 1.12 | 0.26 | 64.79 |
Fig. 14. TEM image (a); HRTEM images of area “A” (b) and “B” (c) as well as “C” (d); diffracting patterns (e-g); line-scanning element composition (h) covering the yellow line range in image (a) of the cross-section of S800.
Fig. 15. Schematic diagram for the process of the NiCoCrAlYTa coating annealed at 800 ℃ (a), and the damage process of cavitation corrosion of the coating before (b-d) and after (e-g) the annealing treatment.
[1] |
G. Awadi, S. Samad, E. Elshazly, Appl. Surf. Sci. 378 (2016) 224-230.
DOI URL |
[2] | X. Peng, S. Jiang, J. Gong, X. Sun, C. Sun, J. Mater. Sci. Technol. 32 (2016) 587-592. |
[3] |
J. Shi, A. Zheng, Z. Lin, R. Chen, J. Zheng, Z. Cao, Mater. Sci. Eng. A 740-741 (2019) 130-136.
DOI URL |
[4] |
J. Liang, Y. Liu, J. Li, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 35 (2019) 344-350.
DOI URL |
[5] |
Y. Han, B. Zhang, X. Gu, X. Qiang, Y. Chu, X. Li, Surf. Coat. Technol. 368 (2019) 202-214.
DOI URL |
[6] |
L. Yang, Z. Zou, Z. Kou, Y. Chen, G. Zhao, X. Zhao, F. Guo, P. Xiao, Acta Mater. 139 (2017) 122-137.
DOI URL |
[7] |
W. Zhu, L. Yang, J. Guo, Y. Zhou, C. Lu, Int. J. Plast. 64 (2015) 76-87.
DOI URL |
[8] |
M. Ansari, R. Razavi, M. Barekat, H. Man, Corros. Sci. 118 (2017) 168-177.
DOI URL |
[9] |
Y. Chen, X. Zhao, P. Xiao, Acta Mater. 159 (2018) 150-162.
DOI URL |
[10] | X. Liu, Y. An, X. Zhao, S. Li, W. Deng, G. Hou, Y. Ye, H. Zhou, J. Chen, Corros. Sci. 112 (2016) 696-709. |
[11] |
H. Yang, J. Zou, Q. Shi, M. Dai, S. Lin, W. Du, L. Lv, Corros. Sci. 153 (2019) 162-169.
DOI URL |
[12] |
Y. Ma, A. Ardell, Scr. Mater. 52 (2005) 1335-1340.
DOI URL |
[13] |
E. Hao, Y. An, X. Zhao, H. Zhou, J. Chen, Appl. Surf. Sci. 462 (2018) 194-206.
DOI URL |
[14] |
C. Xiao, Y. Han, Scr. Mater. 41 (1999) 475-480.
DOI URL |
[15] |
J. Singh, J. Mazumder, Metall. Trans. A 19 (1988) 1981-1990.
DOI URL |
[16] | G. Jackson, W. Sun, D. McCartney, Mater. Sci. Eng. A 754 (2019) 479-490. |
[17] | R. Mahesh, R. Jayaganthan, S. Prakash, J. Mater. Process. Technol. 209 (2009) 3501-3510. |
[18] | K. Yuan, R. Peng, X. Li, S. Johansson, Y. Wang, Surf. Coat. Technol. 261 (2015) 86-101. |
[19] |
L. Qiao, Y. Wu, S. Hong, J. Cheng, Ultrason. Sonochem. 52 (2019) 142-149.
DOI URL PMID |
[20] |
W. Deng, Y. An, G. Hou, S. Li, H. Zhou, J. Chen, Ultrason. Sonochem. 46 (2018) 1-9.
URL PMID |
[21] |
M. Romero, A. Tschiptschin, C. Scandian, Wear 426-427 (2019) 518-526.
DOI URL |
[22] | T. Amann, M. Waidele, A. Kailer, Tribol. Int. 124 (2018) 238-246. |
[23] |
Y. Wang, B. Lebon, I. Tzanakis, Y. Zhao, K. Wang, J. Stella, T. Poirier, G. Darut, H. Liao, M. Planche, Ultrason. Sonochem. 52 (2019) 336-343.
URL PMID |
[24] | Y. Wang, J. Liu, N. Kang, G. Darut, T. Poirier, J. Stella, H. Liao, M. Planche, Tribol. Int. 102 (2016) 429-435. |
[25] | Z. Qin, Q. Zhang, Q. Luo, Z. Wu, B. Shen, L. Liu, W. Hu, Corros. Sci. 139 (2018) 255-266. |
[26] | J. McCollum, M. Pantoya, N. Tamura, Acta Mater. 103 (2016) 495-501. |
[27] | M. Chen, Z. Zou, Y. Lin, H. Li, G. Wang, Y. Ma, Mater. Charact. 151 (2019) 445-456. |
[28] | D. Lee, J. Lee, Y. Zhao, Z. Lu, J. Suh, J. Kim, U. Ramamurty, M. Kawasaki, T. Langdon, J. Jang, Acta Mater. 140 (2017) 443-451. |
[29] | H. Yu, Y. Sun, Z. Wan, H. Zhou, L. Hu, J. Alloys Compd. 741 (2018) 231-239. |
[30] | L. Aissani, M. Fellah, L. Radjehi, C. Nouveau, A. Montagne, A. Alhussein, Surf. Coat. Technol. 359 (2019) 403-413. |
[31] | L. Zhang, H. Peng, Q. Qin, Q. Fan, S. Bao, Y. Wen, J. Alloys Compd. 746 (2018) 45-53. |
[32] | G. ASTM, 32-16, Philadelphia, PA, 2016. |
[33] | Y. Han, H. Chen, D. Gao, G. Yang, B. Liu, Y. Chu, J. Fan, Y. Gao, J. Therm. Spray Technol. 26 (2017) 1758-1775. |
[34] | C. Zhu, P. Li, X. Wu, Ceram. Int. 42 (2016) 7708-7716. |
[35] | B. Cui, D. Jayaseelan, W. Lee, Acta Mater. 59 (2011) 4116-4125. |
[36] |
J. Wang, Y. Zhou, T. Liao, J. Zhang, Z. Lin, Scr. Mater. 58 (2008) 227-230.
DOI URL |
[37] |
D. Li, D. Chen, P. Liang, Ultrason. Sonochem. 35 (2017) 375-381.
DOI URL PMID |
[1] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[2] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[3] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[4] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[7] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[8] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[9] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[10] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[11] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[12] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[13] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[14] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[15] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||