J. Mater. Sci. Technol. ›› 2021, Vol. 66: 213-225.DOI: 10.1016/j.jmst.2020.06.029
• Research Article • Previous Articles
E. Vazirinasab*(), G. Momen, R. Jafari
Received:
2020-04-05
Revised:
2020-06-03
Accepted:
2020-06-15
Published:
2021-03-10
Online:
2021-04-01
Contact:
E. Vazirinasab
About author:
* E-mail address: elham.vazirinasab1@uqac.ca (E. Vazirinasab).E. Vazirinasab, G. Momen, R. Jafari. A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite[J]. J. Mater. Sci. Technol., 2021, 66: 213-225.
Type | HTV-SR (phr) | DE (phr) | FS (phr) | WCA of the surface (°) | CAH of the surface (°) | WCA of the bulk material (°) | CAH of the bulk material (°) |
---|---|---|---|---|---|---|---|
HTV-SR | 100 | 0 | 0 | 110.0 ± 1.7 | 49.1 ± 2.9 | 112.5 ± 2.1 | 48.9 ± 2.2 |
D30F90 | 100 | 30 | 90 | 152.1 ± 1.2 | 19.4 ± 0.9 | 155.8 ± 0.9 | 8.7 ± 1.5 |
D40F80 | 100 | 40 | 80 | 156.6 ± 1.0 | 12.3 ± 1.3 | 158.4 ± 1.0 | 5.9 ± 0.7 |
D50F70 | 100 | 50 | 70 | 159.8 ± 0.8 | 7.6 ± 1.1 | 160.2 ± 1.2 | 3.1 ± 0.8 |
D60F60 | 100 | 60 | 60 | 160.7 ± 0.6 | 6.2 ± 0.7 | 161.3 ± 0.6 | 4.2 ± 0.4 |
D70F50 | 100 | 70 | 50 | 163.1 ± 0.5 | 3.7 ± 0.5 | 159.3 ± 0.8 | 7.1 ± 0.9 |
D80F40 | 100 | 80 | 40 | 164.2 ± 0.7 | 2.8 ± 0.6 | 155.9 ± 1.0 | 18.4 ± 1.6 |
D90F30 | 100 | 90 | 30 | 163.1 ± 0.8 | 5.1 ± 0.4 | 152.0 ± 0.8 | 23.9 ± 1.2 |
Table 1 Chemical composition and wettability properties of the HTV-SR nanocomposites.
Type | HTV-SR (phr) | DE (phr) | FS (phr) | WCA of the surface (°) | CAH of the surface (°) | WCA of the bulk material (°) | CAH of the bulk material (°) |
---|---|---|---|---|---|---|---|
HTV-SR | 100 | 0 | 0 | 110.0 ± 1.7 | 49.1 ± 2.9 | 112.5 ± 2.1 | 48.9 ± 2.2 |
D30F90 | 100 | 30 | 90 | 152.1 ± 1.2 | 19.4 ± 0.9 | 155.8 ± 0.9 | 8.7 ± 1.5 |
D40F80 | 100 | 40 | 80 | 156.6 ± 1.0 | 12.3 ± 1.3 | 158.4 ± 1.0 | 5.9 ± 0.7 |
D50F70 | 100 | 50 | 70 | 159.8 ± 0.8 | 7.6 ± 1.1 | 160.2 ± 1.2 | 3.1 ± 0.8 |
D60F60 | 100 | 60 | 60 | 160.7 ± 0.6 | 6.2 ± 0.7 | 161.3 ± 0.6 | 4.2 ± 0.4 |
D70F50 | 100 | 70 | 50 | 163.1 ± 0.5 | 3.7 ± 0.5 | 159.3 ± 0.8 | 7.1 ± 0.9 |
D80F40 | 100 | 80 | 40 | 164.2 ± 0.7 | 2.8 ± 0.6 | 155.9 ± 1.0 | 18.4 ± 1.6 |
D90F30 | 100 | 90 | 30 | 163.1 ± 0.8 | 5.1 ± 0.4 | 152.0 ± 0.8 | 23.9 ± 1.2 |
Fig. 2. (a) The effect of diatomaceous earth (DE) concentration on the WCA and CAH of the HTV-SR nanocomposite surface and bulk material; (b) a water droplet showing the WCA and CAH of a pristine HTV-SR and a nanocomposite D70F50; (c) SEM image of DE particles (×1000); (d) demonstration of the mirror-like phenomenon on the surfaces of the submerged bulk nanocomposite D70F50; (e) demonstration of the Moses effect around the intact and cut surfaces of nanocomposite D70F50, showing a water meniscus of approx. 5 mm (red arrows illustrate the meniscus). The blue water droplets illustrate the superhydrophobicity of the surfaces.
Type | Swelling ratio | Crosslinking density (mol cm-3) × 10-4 | MC (g mol-1) | Hardness (Shore A) |
---|---|---|---|---|
HTV-SR | 1.485 ± 0.002 | 1.63 ± 0.02 | 7076 ± 109 | 62.8 ± 0.7 |
D30F90 | 0.848 ± 0.006 | 1.16 ± 0.06 | 9943 ± 452 | 92.0 ± 0.6 |
D40F80 | 0.765 ± 0.005 | 1.35 ± 0.05 | 8519 ± 360 | 91.2 ± 0.9 |
D50F70 | 0.668 ± 0.004 | 1.65 ± 0.04 | 6974 ± 278 | 92.1 ± 0.5 |
D60F60 | 0.639 ± 0.003 | 1.76 ± 0.03 | 6540 ± 163 | 94.8 ± 0.6 |
D70F50 | 0.595 ± 0.004 | 1.95 ± 0.04 | 5896 ± 271 | 96.1 ± 0.4 |
D80F40 | 0.550 ± 0.002 | 2.18 ± 0.02 | 5263 ± 102 | 97.0 ± 0.4 |
D90F30 | 0.562 ± 0.004 | 2.12 ± 0.04 | 5427 ± 265 | 97.2 ± 0.9 |
Table 2 Crosslinking measurements obtained from the swelling test and hardness values obtained for the pristine HTV-SR and the produced nanocomposites.
Type | Swelling ratio | Crosslinking density (mol cm-3) × 10-4 | MC (g mol-1) | Hardness (Shore A) |
---|---|---|---|---|
HTV-SR | 1.485 ± 0.002 | 1.63 ± 0.02 | 7076 ± 109 | 62.8 ± 0.7 |
D30F90 | 0.848 ± 0.006 | 1.16 ± 0.06 | 9943 ± 452 | 92.0 ± 0.6 |
D40F80 | 0.765 ± 0.005 | 1.35 ± 0.05 | 8519 ± 360 | 91.2 ± 0.9 |
D50F70 | 0.668 ± 0.004 | 1.65 ± 0.04 | 6974 ± 278 | 92.1 ± 0.5 |
D60F60 | 0.639 ± 0.003 | 1.76 ± 0.03 | 6540 ± 163 | 94.8 ± 0.6 |
D70F50 | 0.595 ± 0.004 | 1.95 ± 0.04 | 5896 ± 271 | 96.1 ± 0.4 |
D80F40 | 0.550 ± 0.002 | 2.18 ± 0.02 | 5263 ± 102 | 97.0 ± 0.4 |
D90F30 | 0.562 ± 0.004 | 2.12 ± 0.04 | 5427 ± 265 | 97.2 ± 0.9 |
Fig. 3. Surface profiles and roughness values of (a) pristine HTV-SR and the nanocomposites (b) D60F60, (c) D70F50, and (d) D80F40; FESEM images of the surface of (e) the pristine HTV-SR and the nanocomposites (f) D60F60, (g) D70F50, and (h) D80F40; FESEM images of the cross-section of (i) the pristine HTV-SR and the nanocomposites (j) D60F60, (k) D70F50, and (l) D80F40. All images (e-l) are at ×1000 magnification.
Fig. 4. FESEM images of the surface of nanocomposites (a) D60F60, (b) D70F50, and (c) D80F40; FESEM images of the cross-section of nanocomposites (d) D60F60, (e) D70F50, and (f) D80F40. All images (a-f) are at ×10000 magnification.
Fig. 5. (a) FTIR spectra of the pristine HTV-SR and nanocomposite D70F50 (inset shows the FTIR spectra of FS and DE); (b) TGA curve of the pristine HTV-SR and nanocomposite D70F50.
Fig. 6. (a)-(c) Sandpaper abrasion of the nanocomposite D70F50; (a) an image of the sandpaper abrasion apparatus; (b) WCA and CAH of the nanocomposite abraded by #160, #320, and #800 sandpaper after 250 abrasion cycles at a 5 kPa abrasion force; (c) WCA and CAH of the nanocomposite abraded by #160, #320, and #800 sandpaper after 250 abrasion cycles at a 25 kPa abrasion force; (d) knife scratching test; (e) tape peeling test; (f) WCA and CAH of the nanocomposite after multiple cycles of tape peeling; (g) water jet impact test; (h) sandblasting test; (i) WCA and CAH of the nanocomposite after several repeated cycles of ultrasonication and abrasion. Insets demonstrate the wettability of the nanocomposite after the associated tests.
Fig. 8. (a) Changes in WCA and CAH of the nanocomposite D70F50 over time during its immersion in deionized water and in the acidic and alkaline solutions; (b) contact angle of droplets of deionized water and the acidic and alkaline solutions during the droplet evaporation test (inset images show the WCA during evaporation of the water droplet); (c) WCA of the nanocomposite and pristine HTV-SR after heating for 2 h at different temperatures; (d) hydrophobic recovery of the nanocomposite following each cycle of plasma treatment; (e) WCA and CAH of the nanocomposite relative to the pristine HTV-SR as a function of the duration of UV irradiation; (f) water uptake of the pristine HTV-SR and SH nanocomposite in relation to the duration of the sample immersion.
Fig. 9. The self-cleaning ability of the volumetric superhydrophobic nanocomposite D70F50. (a) SiC particles having an average diameter of 50 μm and (b) SiC particles having an average diameter of 18 μm were dispersed on the surface and cleaned using several water droplets. A clean surface is observed in the final images of the rows.
[1] | S.C. Shit, P. Shah, Natl. Acad. Sci. Lett. India 36 (2013) 355-365. |
[2] |
J. Song, Y. Li, W. Xu, H. Liu, Y. Lu, J. Colloid Interface Sci. 541 (2019) 86-92.
DOI URL PMID |
[3] |
J.W. Martin, D.M. Whittle, D.C.G. Muir, S.A. Mabury, Environ. Sci. Technol. 38 (2004) 5379-5385.
DOI URL PMID |
[4] | E. Vazirinasab, R. Jafari, G. Momen, T. Carreira, Mater. Sci. Forum 941 (2018) 1808-1814. |
[5] | E. Vazirinasab, R. Jafari, G. Momen, Conference on Electrical Insulation and Dielectric Phenomena Annual Report, 2018, pp. 239-242. |
[6] | W. Tong, D. Xiong, N. Wang, Z. Wu, H. Zhou, Compos. Pt. B-Eng. 176 (2019), 107267. |
[7] | E. Vazirinasab, K. Maghsoudi, R. Jafari, G. Momen, J. Mater. Process. Technol. 276 (2020), 116415. |
[8] | E. Vazirinasab, R. Jafari, G. Momen, Surf. Coat. Technol. 341 (2018) 40-56. |
[9] | Y. Ye, D. Zhang, J. Li, T. Liu, J. Pu, H. Zhao, L. Wang, Corrosion Sci. 147 (2019) 9-21. |
[10] | S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen, Y. Lai, Chem. Eng. J. 333 (2018) 621-629. |
[11] | S. He, Y. Zhan, Y. Bai, J. Hu, Y. Li, G. Zhang, S. Zhao, Compos. Pt. B-Eng. 177 (2019), 107439. |
[12] | Y. Liu, H. Gu, Y. Jia, J. Liu, H. Zhang, R. Wang, B. Zhang, H. Zhang, Q. Zhang, Chem. Eng. J. 356 (2019) 318-328. |
[13] |
J. Dong, X. Ouyang, J. Han, W. Qiu, W. Gao, J. Colloid Interface Sci. 420 (2014) 97-100.
DOI URL PMID |
[14] | K. Maghsoudi, G. Momen, R. Jafari, M. Farzaneh, T. Carreira, Mater. Sci. Forum 941 (2018) 1802-1807. |
[15] | Y. Li, H. Shao, P. Lv, C. Tang, Z. He, Y. Zhou, M. Shuai, J. Mei, W.-M. Lau, Chem.Eng. J. 338 (2018) 440-449. |
[16] | E. Vazirinasab, R. Jafari, G. Momen, Surf. Coat. Technol. 375 (2019) 100-111. |
[17] |
H. Alamri, A. Al-Shahrani, E. Bovero, T. Khaldi, G. Alabedi, W. Obaid, I. Al-Taie, A. Fihri, J. Colloid Interface Sci. 513 (2018) 349-356.
DOI URL PMID |
[18] | R. Jafari, C. Cloutier, A. Allahdini, G. Momen, Int. J. Adv. Manuf. Technol. 103 (2019) 1225-1238. |
[19] | K. Maghsoudi, G. Momen, R. Jafari, M. Farzaneh, T. Carreira, 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP),Cancun, 2018, pp. 179-182. |
[20] | K. Maghsoudi, G. Momen, R. Jafari, M. Farzaneh, Appl. Surf. Sci. 458 (2018) 619-628. |
[21] |
H. Zhou, H. Wang, H. Niu, A. Gestos, X. Wang, T. Lin, Adv. Mater. 24 (2012) 2409-2412.
DOI URL PMID |
[22] | A. Bezdomnikov, A. Emel’yanenko, K. Emel’yanenko, L. Boinovich, Russ. J. Phys. Chem. A 92 (2018) 178-184. |
[23] |
T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, R.H. Ras, Adv. Mater. 23 (2011) 673-678.
URL PMID |
[24] | H.C. Ye, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, Environ. Sci. Nano 6 (2019) 1259-1266. |
[25] | Y. Li, L. Li, J. Sun, Angew. Chemie Int. Ed. 49 (2010) 6129-6133. |
[26] |
N. Puretskiy, G. Stoychev, A. Synytska, L. Ionov, Langmuir 28 (2012) 3679-3682.
DOI URL PMID |
[27] | X. Zhang, Y. Guo, H. Chen, W. Zhu, P. Zhang, J. Mater. Chem. A 2 (2014) 9002-9006. |
[28] | M. Yu, Z. Cui, F. Ge, C. Man, L. Lei, X. Wang, Compos. Pt. B-Eng. 179 (2019), 107431. |
[29] | Y. Li, Z. Zhang, B. Ge, X. Men, Q. Xue, Green Chem. 18 (2016) 5266-5272. |
[30] | E. Wang, H. Wang, Y. Hu, Z. Liu, Y. Zhu, J. Mater. Sci. 52 (2017) 7130-7139. |
[31] | X. Zhu, Z. Zhang, G. Ren, J. Yang, K. Wang, X. Xu, X. Men, X. Zhou, J. Mater. Chem. 22 (2012) 20146-20148. |
[32] | A. Ijaz, A. Miko, A. Demirel, New J.Chem. 42 (2018) 8544-8552. |
[33] |
H.J. Perera, H. Mortazavian, F.D. Blum, Langmuir 33 (2017) 2799-2809.
DOI URL PMID |
[34] |
M.J. Nine, M.A. Cole, L. Johnson, D.N. Tran, D. Losic, ACS Appl. Mater. Interfaces 7 (2015) 28482-28493.
DOI URL PMID |
[35] | G. Polizos, K. Winter, M.J. Lance, H.M. Meyer, B.L. Armstrong, D.A. Schaeffer, J.T. Simpson, S.R. Hunter, P.G. Datskos, Appl. Surf. Sci. 292 (2014) 563-569. |
[36] | H.J. Perera, B.K. Khatiwada, A. Paul, H. Mortazavian, F.D. Blum, J. Appl. Polym. Sci. 133 (2016) 44072. |
[37] | H. Zhang, H. Yang, B. Shentu, S. Chen, M. Chen, J. Appl. Polym. Sci. 135 (2018) 46099. |
[38] | P.J. Flory, J. Rehner, J. Chem. Phys. 11 (1943) 512-520. |
[39] | V. Silva, M. Paschoalino, M. Gonc? alves, M. Felisberti, W. Jardim, I. Yoshida, Mater. Chem. Phys. 113 (2009) 395-400. |
[40] | S. Diao, K. Jin, Z. Yang, H. Lu, S. Feng, C. Zhang, Mater. Chem. Phys. 129 (2011) 202-208. |
[41] | O. Zabihi, M. Aghaie, K. Zare, J. Therm. Anal. Calorim. 111 (2013) 703-710. |
[42] | A. Olad, H. Zebhi, D. Salari, A. Mirmohseni, A. Reyhanitabar, J. Porous Mat. 25 (2018) 1325-1335. |
[43] | N.D. Bansod, C. Das, Plast. Rubber Compos. 47 (2018) 345-351. |
[44] | Y. Tong, H. Liu, A. Chen, H. Guan, J. Kong, S. Liu, C. He, J. Appl. Polym. Sci. 135 (2018), 46646. |
[45] | Y. Lin, L. Wang, F. Yin, M. Farzaneh, Y. Liu, S. Gao, J. Appl. Polym. Sci. 136 (2019) 47477. |
[46] | B. Ge, Z. Zhang, X. Zhu, G. Ren, X. Men, X. Zhou, Colloids Surf. A Physicochem.Eng. Asp. 429 (2013) 129-133. |
[47] | H. Dodiuk, S.H. Goodman, Handbook of Thermoset Plastics, William Andrew, 2014. |
[48] | Y. Lin, L. Wang, F. Yin, M. Farzaneh, Y. Liu, S. Gao, J. Appl. Polym. Sci. 136 (2019) 47477. |
[49] | A. Milionis, K. Dang, M. Prato, E. Loth, I. Bayer, J. Mater. Chem. A 3 (2015) 12880-12889. |
[50] |
W.-Z. Yuan, L.-Z. Zhang, Langmuir 33 (2017) 820-829.
URL PMID |
[51] |
M.T. Nazir, B. Phung, M. Hoffman, IEEE Trans. Dielectr. Electr. Insul. 23 (2016) 2804-2815.
DOI URL |
[52] | M. Amin, A. Khattak, M. Ali, Electr. Eng. 100 (2018) 217-230. |
[53] | Z. Chen, G. Li, L. Wang, Y. Lin, W. Zhou, Mater. Des. 141 (2018) 37-47. |
[54] |
N. Wang, D. Xiong, Y. Deng, Y. Shi, K. Wang, ACS Appl. Mater. Interfaces 7 (2015) 6260-6272.
URL PMID |
[55] | W. Tong, D. Xiong, N. Wang, Z. Wu, H. Zhou, Compos. Pt B-Eng. 176 (2019), 107267. |
[56] | E. Bormashenko, G. Chaniel, R. Grynyov, Appl. Surf. Sci. 273 (2013) 549-553. |
[57] | N.R. Canada, Photovoltaic and Solar Resource Maps, 2017. |
[58] | B.-H. Youn, C.-S. Huh, IEEE Trans. Dielectr. Electr. Insul. 12 (2005) 1015-1024. |
[59] | Z. Wang, Z. Jia, M. Fang, Z. Guan, IEEE Trans. Dielectr. Electr. Insul. 22 (2015) 3357-3365. |
[60] | K. Maghsoudi, G. Momen, R. Jafari, M. Farzaneh, Surf. Coat. Technol. 374 (2019) 557-568. |
[61] | X. Liu, K. Wang, W. Zhang, J. Zhang, J. Li, Compos. Pt B-Eng. 174 (2019), 107002. |
[62] |
M. Yu, S. Chen, B. Zhang, D. Qiu, S. Cui, Langmuir 30 (2014) 13615-13621.
URL PMID |
[1] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[2] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[3] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[4] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[5] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[6] | Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties [J]. J. Mater. Sci. Technol., 2020, 38(0): 86-92. |
[7] | Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage [J]. J. Mater. Sci. Technol., 2020, 36(0): 70-78. |
[8] | Yaqi Shan, Mingliang Wang, Zengliang Shi, Milan Lei, Xiaoxuan Wang, Fu-Gen Wu, Huan-Huan Ran, Gowri Manohari Arumugam, Qiannan Cui, Chunxiang Xu. SERS-encoded nanocomposites for dual pathogen bioassay [J]. J. Mater. Sci. Technol., 2020, 43(0): 161-167. |
[9] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
[10] | Aeree Kim, Seonghyeon Kim, Myoung Huh, Hyungmo Kim, Chan Lee. Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 106-116. |
[11] | Emese Lantos, László Mérai, Ágota Deák, Juan Gómez-Pérez, Dániel Sebők, Imre Dékány, Zoltán Kónya, László Janovák. Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material [J]. J. Mater. Sci. Technol., 2020, 41(0): 159-167. |
[12] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
[13] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[14] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
[15] | Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction [J]. J. Mater. Sci. Technol., 2019, 35(9): 2107-2114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||