Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 106-116    DOI: 10.1016/j.jmst.2020.02.022
Research Article Current Issue | Archive | Adv Search |
Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite
Aeree Kima,*,1(), Seonghyeon Kima,1, Myoung Huha, Hyungmo Kimb, Chan Leeb
a Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
b Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Republic of Korea
Download:  HTML  PDF(3532KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper introduces an effective anti-icing strategy that uses passive anti-icing property and active de-icing functions concurrently. These dual capabilities can alleviate the icing problem more effectively than either a passive or active function alone. The developed material is a slippery liquid-repellent elastic conductor (SLEC); it is an organogel that is composed of multi-walled carbon nanotubes, oil, and polydimethylsiloxane. The SLEC maintains passive water-droplet sliding ability even on wet surfaces that frequently occur in cold conditions (e.g., during condensation and defrosting), suppresses ice nucleation, and shows ice adhesion strength as low as ~ 20 kPa. The SLEC releases heat when it is subject to electrical or photonic stimulation, and can therefore it can prevent ice formation and melt ice that has already formed on a surface. This material has sustainable liquid repellence by syneresis and replenishment; this ability ensures long-lasting anti-icing property, and results in exceptional durability. This durability is stable against mechanical damage. The superior dual anti-icing capabilities together with the sustainable and stable liquid repellence should generate synergistic effects, and yield a powerful anti-icing tool that can broaden the range of icing applications.

Key words:  Anti-icing      De-icing      Icephobic      Soft conductor      Self-healing      Nanocomposite      Liquid repellence     
Received:  21 October 2019     
Corresponding Authors:  Aeree Kim     E-mail:  kar890907@postech.ac.kr
About author:  1 These authors contributed equally as co-first authors to this work.

Cite this article: 

Aeree Kim, Seonghyeon Kim, Myoung Huh, Hyungmo Kim, Chan Lee. Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite. J. Mater. Sci. Technol., 2020, 49(0): 106-116.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.022     OR     https://www.jmst.org/EN/Y2020/V49/I0/106

Fig. 1.  Comprehensive anti-icing strategy of SLEC. (a) Passive anti-icing property with (a-1) liquid repellence, and (b) active deicing function of the SLEC. FLIR and optical images when the SLEC is heated by (b-1) Joule heating, and by (b-2) laser illumination.
Fig. 2.  Results for sustainable liquid repellence. (a) Test to show maintenance of liquid-repellence after condensation with SLEC (M11L90), SHPo, and SLUG (M0L90). (b) Melting frost slides down M14L90, and (c) subsequent impinging droplets slide off of it. (d) Melting frost remained on SHPo, and (e) subsequent droplets stuck to it. (f) Time lapse images for icing delay time and (g) frost coverage ratio over time on SHPo, M14L90, and M11L90. (h) Frost propagation on M11L90.
Fig. 3.  Ice adhesion strength (a) of SLECs with different oil and MWNTs contents, (b) in cycling ice adhesion tests of M14L60.
Fig. 4.  Active anti-icing using electro-thermogenesis. Capability of (a,b) SLUG (M0L90) and SLEC (M14L90) on ice prevention by application of voltage (25 V) on low-temperature Peltier plate (-7 ℃). (c) Water-droplet dripping after test of (a, b). Sample is still on the low-temperature plate. Defrosting capability of (d) SLUG (M0L90) and SLEC (M14L90) on a Peltier plate at 11 ℃, by application of voltage (25 V).
Fig. 5.  Active anti-icing function using photo-thermogenesis. (a) Capability of ice prevention of SLUG (M0L60) and SLEC (M14L60) by laser illumination (532 nm, 500 mW/cm2). (b) FLIR images that correspond to (a).
Fig. 6.  (a) Syneresis behavior induced by Joule heating for 500 min (b) Temperature increase induced by laser irradiation (532 nm, 500 mW/cm2) for 1 h, and syneresis behavior induced by photothermogenesis. (c) Demonstration of lubricant replenishment. Optical images of SLECs: (left) SLEC in its initial condition after complete removal of remained oil. SLECs after syneresis for 24 h at 70 °C: (middle) sample without replenishment and (right) sample with replenishment. (d) Comparison of weight loss of the two samples.
Fig. 7.  (a) Scalable SLEC fabrication (b) self-cleaning property of SLEC. The dirt is removed by the rolling droplet. Stability of liquid repellence after (c) abrasion test, and (d) blade-cutting test. (e) mechanical stability of SLEC under multi-cycles of stretching and bending loading. Here, resistance change ΔR (i.e. the difference resistance after strain to initial resistance R0) was normalized to R0: ΔR?R0. (left. ΔR/R0 of M15L90 as a function of multiple (> 100 times) bending cycles with displacement of 1.2 cm. (right) ΔR/R0 of M15L90 with different off-times TOFF as a function of multiple (> 100 times) stretching and releasing cycles with 35 % strain.
[1] M.J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Nat. Rev. Mater. 1 (2016) 1-15.
[2] K. Golovin S.P.R. Kobaku, D.H. Lee, E.T. DiLoreto, J.M. Mabry, A. Tuteja, Sci. Adv. 2 (2016), e1501496.
doi: 10.1126/sciadv.1501496 pmid: 26998520
[3] L. Wang, Q. Gong, S. Zhan, L. Jiang, Y. Zheng, Adv. Mater. 28 (2016) 7729-7735.
doi: 10.1002/adma.201602480 pmid: 27375270
[4] A. Kim, C. Lee, H. Kim, J. Kim, ACS Appl. Mater. Interfaces 7 (2015) 7206-7213.
doi: 10.1021/acsami.5b00292 pmid: 25782028
[5] Y. Shen, X. Wu, J. Tao, C. Zhu, Y. Lai, Z. Chen, Prog. Mater. Sci. 103 (2019) 509-557.
[6] S. Zhang, J. Huang, Y. Cheng, H. Yang, Z. Chen, Y. Lai, Small 1 (2017), 1701867.
[7] M.I. Jamil, A. Ali, F. Haq, Q. Zhang, X. Zhan, F. Chen, Langmuir 34 (2018) 15425-15444.
pmid: 30445813
[8] L. Zhu, J. Xue, Y. Wang, Q. Chen, J. Ding, Q. Wang, ACS Appl. Mater. Interfaces 5 (2013) 4053-4062.
pmid: 23642087
[9] X. Wu, Z. Chen, J. Mater. Chem. A 6 (2018) 16043-16052.
[10] B. Liu, K. Zhang, C. Tao, Y. Zhao, X. Li, K. Zhu, X. Yuan, RSC Adv. 6 (2016) 70251-70260.
[11] S. Bengaluru Subramanyam, V. Kondrashov, J. Ruhe, K.K. Varanasi, ACS Appl. Mater. Interfaces 8 (2016) 12583-12587.
doi: 10.1021/acsami.6b01133 pmid: 27150450
[12] T.-B. Nguyen, S. Park, H. Lim, Appl. Surf. Sci. 435 (2018) 585-591.
doi: 10.1016/j.apsusc.2017.11.137
[13] L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, J. Aizenberg, ACS Nano 4 (2010) 7699-7707.
doi: 10.1021/nn102557p pmid: 21062048
[14] H.Y. Erbil, Surf. Innov. 4 (2016) 214-217.
doi: 10.1680/jsuin.16.00026
[15] P. Irajizad, M. Hasnain, N. Farokhnia, S.M. Sajadi, H. Ghasemi, Nat. Commun. 7 (2016) 13395.
pmid: 27824053
[16] A. Alizadeh, M. Yamada, R. Li, W. Shang, S. Otta, S. Zhong, L. Ge, A. Dhinojwala, K.R. Conway, V. Bahadur, A.J. Vinciquerra, B. Stephens, M.L. Blohm, Langmuir 28 (2012) 3180-3186.
doi: 10.1021/la2045256 pmid: 22235939
[17] K. Li, S. Xu, W. Shi, M. He, H. Li, S. Li, X. Zhou, J. Wang, Y. Song, Langmuir 28 (2012) 10749-10754.
pmid: 22741592
[18] C. Marcolli, Sci. Rep. 7 (2017) 16634.
doi: 10.1038/s41598-017-16787-3 pmid: 29192142
[19] S.J. Cox, S.M. Kathmann, B. Slater, A. Michaelides, J. Chem. Phys. 142 (2015), 184704.
doi: 10.1063/1.4919714
[20] T. Matsubayashi, M. Tenjimbayashi, K. Manabe, M. Komine, W. Navarrini, S. Shiratori, ACS Appl. Mater. Interfaces 8 (2016) 24212-24220.
doi: 10.1021/acsami.6b07844 pmid: 27540638
[21] M. Elsharkawy, D. Tortorella, S. Kapatral, C.M. Megaridis, Langmuir 32 (2016) 4278-4288.
doi: 10.1021/acs.langmuir.6b00064 pmid: 27021948
[22] J.B. Boreyko, B.R. Srijanto, T.D. Nguyen, C. Vega, M. Fuentes-Cabrera, C.P. Collier, Langmuir 29 (2013) 9516-9524.
pmid: 23822157
[23] B. Park, W. Hwang, Scr. Mater. 113 (2016) 118-121.
doi: 10.1016/j.scriptamat.2015.10.018
[24] M. Wu, Y. Li, N. An, J. Sun, Adv. Funct. Mater. 26 (2016) 6777-6784.
[25] G. Jiang, L. Chen, S. Zhang, H. Huang, ACS Appl. Mater. Interfaces 10 (2018) 36505-36511.
doi: 10.1021/acsami.8b11201 pmid: 30273481
[26] X. Yin, Y. Zhang, D. Wang, Z. Liu, Y. Liu, X. Pei, B. Yu, F. Zhou, Adv. Funct. Mater. 25 (2015) 4237-4245.
[27] N. Wang, D. Xiong, S. Pan, K. Wang, Y. Shi, Y. Deng, New J. Chem. 41 (2017) 1846-1853.
[28] S. Ozbay, C. Yuceel, H.Y. Erbil, ACS Appl. Mater. Interfaces 7 (2015) 22067-22077.
pmid: 26375386
[29] S.B. Subramanyam, K. Rykaczewski, K.K. Varanasi, Langmuir 29 (2013) 13414-13418.
doi: 10.1021/la402456c pmid: 24070257
[30] K. Rykaczewski, S. Anand, S.B. Subramanyam, K.K. Varanasi, Langmuir 29 (2013) 5230-5238.
pmid: 23565857
[31] C. Urata, G.J. Dunderdale, M.W. England, A. Hozumi, J. Mater. Chem. A 3 (2015) 12626-12630.
[32] A. Sandhu, O.J. Walker, A. Nistal, K.L. Choy, A.J. Clancy, Chem. Commun. 55 (2019) 3215-3218.
[33] Y. Wang, X. Yao, J. Chen, Z. He, J. Liu, Q. Li, J. Wang, L. Jiang, Sci. China Mater. 58 (2015) 559-565.
doi: 10.1007/s40843-015-0069-7
[34] Y.H. Yeong, C. Wang, K.J. Wynne, M.C. Gupta, ACS Appl. Mater. Interfaces 8 (2016) 32050-32059.
pmid: 27797475
[35] Y. Wang, X. Yao, S. Wu, Q. Li, J. Lv, J. Wang, L. Jiang, Adv. Mater. 29 (2017), 1700865.
doi: 10.1002/adma.v29.26
[36] Q. Li, Z. Guo, J. Mater. Chem. A 6 (2018) 13549-13581.
[37] M. Yan, C. Zhang, R. Chen, Q. Liu, J. Liu, J. Yu, L. Gao, G. Sun, J. Wang, J. Mater. Chem. A 7 (2019) 24900-24907.
[38] A. Kim, S. Kim, M. Huh, J. Kim, in: Proceeding to the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast Waterfront, Belfast, Northern Ireland, 2018, January, 21-25. 21-25.
[39] A. Kim, C. Lee, J. Kim, Surf. Coat. Technol. 344 (2018) 394-401.
[40] K.K. Varanasi, M. Hsu, N. Bhate, W. Yang, T. Deng, Appl. Phys. Lett. 95 (2009), 094101.
[41] P.W. Wilson, W. Lu, H. Xu, P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Phys. Chem. Chem. Phys. 15 (2013) 581-585.
pmid: 23183624
[42] M. Zhang, J. Yu, R. Chen, Q. Liu, J. Liu, D. Song, P. Liu, L. Gao, J. Wang, J. Alloy, Compd. 803 (2019) 51-60.
[43] C. Bocking, A. Reynolds, T.I. Met, Finish 89 (2013) 298-302.
[44] Z. He, E.T. Vagenes, C. Delabahan, J. He, Z. Zhang, Sci. Rep. 7 (2017) 42181.
pmid: 28169370
[45] Z. He, Y. Zhuo, J. He, Z. Zhang, Soft Matter 14 (2018) 4846-4851.
doi: 10.1039/c8sm00820e pmid: 29845173
[46] D.L. Beemer, W. Wang, A.K. Kota, J. Mater, Chem. A 4 (2016) 18253-18258.
[47] S.A. Kulinich, M. Farzaneh, Langmuir 25 (2009) 8854-8856.
doi: 10.1021/la901439c pmid: 19719211
[48] S.B. Subramanyam, K. Rykaczewski, K.K. Varanasi, Langmuir 29 (2013) 13414.
doi: 10.1021/la402456c pmid: 24070257
[49] C. Wang, T. Fuller, W. Zhang, K.J. Wynne, Langmuir 30 (2014) 12819-12826.
doi: 10.1021/la5030444 pmid: 25299447
[50] T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Nature 477 (2011) 443-447.
doi: 10.1038/nature10447 pmid: 21938066
[51] J. Lv, X. Yao, Y. Zheng, J. Wang, L. Jiang, Adv. Mater. 29 (2017), 1703032.
[52] X. Wu, Y. Tang, V.V. Silberschmidt, P. Wilson, Z. Chen, Adv. Mater. Interfaces 5(2018).
[53] M. Cao, D. Guo, C. Yu, K. Li, M. Liu, L. Jiang, ACS Appl. Mater. Interfaces 8 (2016) 3615-3623.
doi: 10.1021/acsami.5b07881 pmid: 26447551
[54] J.D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R.E. Cohen, G.H. McKinley, K.K. Varanasi, Soft Matter 9 (2013) 1772-1780.
doi: 10.1039/C2SM27032C
[55] Y. Wang, H. Zhang, X. Liu, Z. Zhou, J. Mater, Chem. A 4 (2016) 2524-2529.
[56] M. Amjadi K.-U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater. 26 (2016) 1678-1698.
doi: 10.1002/adfm.v26.11
[1] Yaqi Shan, Mingliang Wang, Zengliang Shi, Milan Lei, Xiaoxuan Wang, Fu-Gen Wu, Huan-Huan Ran, Gowri Manohari Arumugam, Qiannan Cui, Chunxiang Xu. SERS-encoded nanocomposites for dual pathogen bioassay[J]. 材料科学与技术, 2020, 43(0): 161-167.
[2] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[3] Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics[J]. 材料科学与技术, 2020, 40(0): 135-145.
[4] Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage[J]. 材料科学与技术, 2020, 36(0): 70-78.
[5] Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater[J]. 材料科学与技术, 2020, 45(0): 84-91.
[6] Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane[J]. 材料科学与技术, 2020, 45(0): 70-83.
[7] Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study[J]. 材料科学与技术, 2020, 46(0): 21-32.
[8] Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds[J]. 材料科学与技术, 2020, 46(0): 237-247.
[9] Emese Lantos, László Mérai, Ágota Deák, Juan Gómez-Pérez, Dániel Sebők, Imre Dékány, Zoltán Kónya, László Janovák. Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material[J]. 材料科学与技术, 2020, 41(0): 159-167.
[10] Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction[J]. 材料科学与技术, 2019, 35(9): 2107-2114.
[11] C.C. Roach, Y.C. Lu. Finite element analysis of the effect of interlayer on interfacial stress transfer in layered graphene nanocomposites[J]. 材料科学与技术, 2019, 35(6): 1147-1152.
[12] Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel[J]. 材料科学与技术, 2019, 35(3): 448-459.
[13] Peisan Wang, Chunxia Qi, Luyuan Hao, Pengchao Wen, Xin Xu. Sepiolite/Cu2O/Cu photocatalyst: Preparation and high performance for degradation of organic dye[J]. 材料科学与技术, 2019, 35(3): 285-291.
[14] Chaoxuan Shen, Han Wang, Tengxin Zhang, You Zeng. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites[J]. 材料科学与技术, 2019, 35(1): 36-43.
[15] Lian Guo, Wei Wu, Yongfeng Zhou, Fen Zhang, Rongchang Zeng, Jianmin Zeng. Layered double hydroxide coatings on magnesium alloys: A review[J]. 材料科学与技术, 2018, 34(9): 1455-1466.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.