J. Mater. Sci. Technol. ›› 2020, Vol. 52: 20-28.DOI: 10.1016/j.jmst.2020.02.051
• Research Article • Previous Articles Next Articles
Lin Chena, Mingyu Hua,b, Jun Guoa, Xiaoyu Chonga,*(), Jing Fenga,*()
Received:
2019-01-18
Revised:
2020-02-04
Accepted:
2020-02-05
Published:
2020-09-15
Online:
2020-09-18
Contact:
Xiaoyu Chong,Jing Feng
Lin Chen, Mingyu Hu, Jun Guo, Xiaoyu Chong, Jing Feng. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase[J]. J. Mater. Sci. Technol., 2020, 52: 20-28.
Fig. 1. Structures identification of m'RETaO4 (RE = Yb, Lu, Sc) ceramics; (a) XRD patterns, 10-60?; (b) XRD patterns, 26-32?; (c) Raman spectra, 100-1000 cm-1; (d) Raman spectra, 800-900 cm-1; (e) Raman spectra, 245-345 cm-1.
Sample | R | a | b | c | β | V | ρ | ρR | sig | Rwp |
---|---|---|---|---|---|---|---|---|---|---|
YbTaO4 | 0.99 | 5.25 | 5.42 | 5.07 | 96.20 | 143.5 | 9.17 | 94.8 | 3.50 | 16.41 |
LuTaO4 | 0.98 | 5.24 | 5.43 | 5.06 | 96.06 | 141.8 | 9.29 | 95.2 | 5.09 | 22.19 |
ScTaO4 | 0.75 | 5.12 | 5.67 | 4.81 | 91.65 | 134.0 | 7.03 | 98.0 | 3.38 | 14.26 |
Table 1 RE3+ ionic radius (R/nm), lattice parameter (a, b, c/?), beta angle (β/o), unit cell volume (V/?3), bulk density (ρ/g. cm-3), relative density (ρR/%), and refinement index (sig and Rwp/%) of m'RETaO4 (RE = Yb, Lu, Sc) ceramics.
Sample | R | a | b | c | β | V | ρ | ρR | sig | Rwp |
---|---|---|---|---|---|---|---|---|---|---|
YbTaO4 | 0.99 | 5.25 | 5.42 | 5.07 | 96.20 | 143.5 | 9.17 | 94.8 | 3.50 | 16.41 |
LuTaO4 | 0.98 | 5.24 | 5.43 | 5.06 | 96.06 | 141.8 | 9.29 | 95.2 | 5.09 | 22.19 |
ScTaO4 | 0.75 | 5.12 | 5.67 | 4.81 | 91.65 | 134.0 | 7.03 | 98.0 | 3.38 | 14.26 |
Sample | Polyhedron | Bond | d | D | Δd | |||
---|---|---|---|---|---|---|---|---|
YbTaO4 | [TaO6] | Ta-O | 1.9198 | 1.9832 | 2.4842 | 2.1291 | 2.99 | |
[YbO8] | Yb-O | 2.1266 | 2.1989 | 2.2744 | 2.5605 | 2.2901 | 1.18 | |
LuTaO4 | [TaO6] | Ta-O | 1.9302 | 1.9649 | 2.4463 | 2.1138 | 2.62 | |
[LuO8] | Lu-O | 1.9789 | 2.2265 | 2.4657 | 2.5937 | 2.3162 | 2.39 | |
ScTaO4 | [TaO6] | Ta-O | 1.9614 | 2.0218 | 2.1531 | 2.0454 | 0.31 | |
[ScO6] | Sc-O | 2.0380 | 2.0707 | 2.0723 | 2.0603 | 0.01 |
Table 2 The REO and TaO bond lengths (d/?), mean values of bond length (D/?) in [REON] and [TaON] (N = 6, 8) polyhedrons, and polyhedron’s distortion degree (Δd/%) of m'RETaO4 (RE = Yb, Lu, Sc) ceramics.
Sample | Polyhedron | Bond | d | D | Δd | |||
---|---|---|---|---|---|---|---|---|
YbTaO4 | [TaO6] | Ta-O | 1.9198 | 1.9832 | 2.4842 | 2.1291 | 2.99 | |
[YbO8] | Yb-O | 2.1266 | 2.1989 | 2.2744 | 2.5605 | 2.2901 | 1.18 | |
LuTaO4 | [TaO6] | Ta-O | 1.9302 | 1.9649 | 2.4463 | 2.1138 | 2.62 | |
[LuO8] | Lu-O | 1.9789 | 2.2265 | 2.4657 | 2.5937 | 2.3162 | 2.39 | |
ScTaO4 | [TaO6] | Ta-O | 1.9614 | 2.0218 | 2.1531 | 2.0454 | 0.31 | |
[ScO6] | Sc-O | 2.0380 | 2.0707 | 2.0723 | 2.0603 | 0.01 |
Fig. 5. Mechanical properties of m'RETaO4 (RE = Yb, Lu, Sc) ceramics; (a) The relationship between elastic modulus and acoustic velocity; (b) Young’s modulus [22,36,37].
Sample | VL | VT | VM | E | G | B | ν | γ |
---|---|---|---|---|---|---|---|---|
YbTaO4 | 4155 | 2262 | 2523 | 122 | 47 | 96 | 0.29 | 1.70 |
LuTaO4 | 4193 | 2266 | 2530 | 124 | 48 | 100 | 0.29 | 1.73 |
ScTaO4 | 6524 | 3597 | 4009 | 268 | 102 | 227 | 0.30 | 1.80 |
Table 3 Acoustic velocity (VL, VT, VM/m.s-1), elastic modulus (E, G, B/GPa), Poisson ratio (ν), and Grüneisen parameter (γ) of m'RETaO4 (RE = Yb, Lu, Sc) ceramics.
Sample | VL | VT | VM | E | G | B | ν | γ |
---|---|---|---|---|---|---|---|---|
YbTaO4 | 4155 | 2262 | 2523 | 122 | 47 | 96 | 0.29 | 1.70 |
LuTaO4 | 4193 | 2266 | 2530 | 124 | 48 | 100 | 0.29 | 1.73 |
ScTaO4 | 6524 | 3597 | 4009 | 268 | 102 | 227 | 0.30 | 1.80 |
Fig. 6. Thermal expansion performance of m'RETaO4 (RE = Yb, Lu, Sc) ceramics; (a) Thermal expansion rate; (b) TECs; (c) The influence factors of TECs.
Fig. 7. Thermal transport properties of m'RETaO4 (RE = Yb, Lu, Sc) ceramics; (a) Specific heat; (b) Thermal diffusivity; (c) Temperature dependent thermal conductivity; (d) Phonon mean free path; (e) Thermal conductivity [5,36,43,44].
Fig. 8. Investigation on high-temperature thermal conductivity of m'RETaO4 (RE = Yb, Lu, Sc) ceramics; (a) Reciprocal thermal diffusivity; (b) Comparison of ScTaO4 thermal diffusivity; (c) Thermal conductivity of ScTaO4; (d) Thermal conductivity of YbTaO4; (e) Thermal conductivity of LuTaO4.
Fig. 9. XRD results of high-temperature heat treatment m'RETaO4 (RE = Yb, Lu, Sc) ceramics mixed with Al2O3/SiO2; (a) YbTaO4+Al2O3; (b) YbTaO4+SiO2; (c) LuTaO4+Al2O3; (d) LuTaO4+SiO2; (e) ScTaO4+Al2O3; (f) ScTaO4+SiO2.
[1] |
N.P. Padture , Nat. Mater., 15(2016), pp. 804-809.
DOI URL |
[2] | D.R. Clarke, S.R. Phillpot , Mater. Today., 8(2005), pp. 22-29. |
[3] |
B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y.C. Zhou, J. Mater. Sci. Technol., 35(2019), pp. 833-851.
DOI URL |
[4] | Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. (2019), pp. 2227-2231. |
[5] |
M.P. Hu, Y.M. Lei, J. Zhang, J.Y. Wang, J. Mater. Sci. Technol., 35(2019), pp. 2064-2069.
DOI URL |
[6] | G.R. Li, G.J. Yang, J. Mater. Sci. Technol., 35(2019), pp. 231-238. |
[7] |
H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol., 36(2020), pp. 134-139.
DOI URL |
[8] |
L.R. Turcer, N.P. Padture , Scripta Mater., 154(2018), pp. 111-117.
DOI URL |
[9] |
B.T. Richards, S. Sehr, F. Franqueville, M.R. Begley H.N.G. Wadley, Acta Mater., 103(2016), pp. 448-460.
DOI URL |
[10] |
L. Chen, G.J. Yang, J. Adv. Ceram., 7(2018), pp. 17-29.
DOI URL |
[11] |
J. Wang, X.Y. Chong, R. Zhou, J. Feng , Scripta Mater., 126(2017), pp. 24-28.
DOI URL |
[12] |
S. Shian, P. Sarin, M. Gurak, M. Baram, W.M. Kriven, D.R. Clarke , Acta Mater., 69(2014), pp. 196-202.
DOI URL |
[13] |
B. Liu, J.Y. Wang, F.Z. Li, Y.C. Zhou , Acta Mater., 58(2010), pp. 4369-4377.
DOI URL |
[14] |
Z.L. Tian, C.F. Lin, L.Y. Zheng, L.C. Sun, J.L. Li, J.Y. Wang , Acta Mater., 144(2018), pp. 292-304.
DOI URL |
[15] | J. Feng, S. Shian, B. Xiao, D.R. Clarke, Phys. Rev. B, 90 (2014), Article 094102. |
[16] |
Q. Flamant, M. Gurak, D.R. Clarke, J. Eur. Ceram. Soc., 38(2018), pp. 3925-3931.
DOI URL |
[17] |
L. Guo, H.B. Guo, P. Hui, S.K. Gong, J. Eur. Ceram. Soc., 34(2014), pp. 1255-1263.
DOI URL |
[18] |
L. Chen, P. Song, J. Feng , Scripta Mater., 152(2018), pp. 117-121.
DOI URL |
[19] |
Y.C. Liu, B. Liu, H.M. Xiang, Y.C. Zhou, H.Q. Nian, H.F. Chen, G. Yang, Y.F. Gao, J. Am. Ceram. Soc., 101(2018), pp. 3527-3540.
DOI URL |
[20] | M. Zhao, W. Pan, T.J. Li, M.Z. Huang, Y.J. Huang, J. Yang, Z. Li, C.L. Wan, J. Am. Ceram. Soc., 102(2019), pp. 1961-1970. |
[21] |
L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, N.P. Padture, J. Eur. Ceram. Soc., 38(2018), pp. 3914-3924.
DOI URL |
[22] |
L. Chen, M.Y. Hu, P. Wu, J. Feng, J. Am. Ceram. Soc., 102(2019), pp. 4809-4821.
DOI URL |
[23] | D.R. Clarke , Surf. Coat. Tech.,163-164(2003), pp. 67-74. |
[24] |
D.S. Sanditov, V.N. Belomestnykh , Tech. Phys., 56(2011), pp. 1619-1623.
DOI URL |
[25] |
K.W. Schlichting, N.P. Padture, P.G. Klemens, J. Mater. Sci., 36(2001), pp. 3003-3010.
DOI URL |
[26] | C. Kittle Introduction of Solid State Physics, Wiley, New York (1996). |
[27] | J. Leitner, P. Chuchvalec, D. Sedmidubsky, A. Strejc, P. Abrman , Therm. Acta., 395(2003), pp. 1074-1084. |
[28] | D.L. Ye Handbook of Inorganic Substance Thermodynamics, Metallurgical Industry Press, Beijing(2002). |
[29] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol., 35(2019), pp. 2892-2896.
DOI URL |
[30] | M. Nazarov , Moldav. J. Phys. Sci., 9( 2010). |
[31] | G.M. Wolten, A.B. Chase , Am. Miner., 52(1967), pp. 1536-1541. |
[32] |
H.J. Cong, H.J. Zhang, J.Y. Wang, W.T. Yu, H.D. Fan, X.F. Cheng, J. Appl. Crystallogr., 42(2009), pp. 284-294.
DOI URL |
[33] |
W. Baur , Acta Crystallogr. Sec. B, 30(1974), pp. 1195-1215.
DOI URL |
[34] |
K. Momma, F. Izumi, J. Appl. Crystallogr., 41(2008), pp. 653-658.
DOI URL |
[35] |
K. Robinson, G.V. Gibbs, P.H. Ribbe , Science, 172(1971), p. 567.
DOI URL |
[36] |
J. Yang, C.L. Wan, M. Zhao, M. Shahid, W. Pan, J. Eur. Ceram. Soc., 36(2016), pp. 3809-3814.
DOI URL |
[37] |
X.R. Ren, W. Pan , Acta Mater., 69(2014), pp. 397-406.
DOI URL |
[38] |
W.D. Kingery, J. Am. Ceram. Soc., 38(1955), pp. 3-15.
DOI URL |
[39] | O.L. Anderson, J. Phys. C Solid State Phys., 24(1963), pp. 909-917. |
[40] | D. Quane, J. Chem. Educ., 5(1970), pp. 396-397. |
[41] |
A.R. Ruffa , Phys. Rev. B, 16(1977), pp. 2504-2514.
DOI URL |
[42] |
A.R. Ruffa, J. Mater. Sci., 15(1980), pp. 2258-2267.
DOI URL |
[43] |
L. Yang, Y.C. Liu, W. Zhang, G.H. Zhou, D.Y. Jiang, H.F. Chen, G. Yang, H.Q. Nian, B. Liu, J. Am. Ceram. Soc., 103(2020), pp. 1992-2000.
DOI URL |
[44] | W.D. Kingery, J. Am. Ceram. Soc., 38(1953), pp. 1-15. |
[45] | P.G. Klemens Thermal Conductivity, Academic Press, London and New York (1969), pp. 2-65. |
[46] |
D.G. Cahill, S.K. Watson, R.O. Pohl , Phys. Rev. B, 46(1992), p. 6131.
DOI URL |
[47] |
E.S. Toberer, A.Z. Zevalkink, G.J. Snyder, J. Mater. Chem., 21(2011), p. 15843.
DOI URL |
[48] |
Z.H. Ge, Y.H. Ji, Y. Qiu, X.Y. Chong, J. Feng, J.Q. He , Scripta Mater., 143(2018), pp. 90-93.
DOI URL |
[49] |
A. Delmas, L. Robin-Carillon, F. Oelhoffen, T. Lanternier , Int. J. Thermophys., 31(2010), pp. 1092-1110.
DOI URL |
[50] |
L. Wang, M.H. Habibi, J.I. Eldridge, S.M. Guo, J. Eur. Ceram. Soc., 34(2014), pp. 3941-3949.
DOI URL |
[51] |
L.D. Campo D.D.S. Meneses, A Blin, B Rousseau, E Veron, M Balat-Pichelin, P Echegut, J. Am. Ceram. Soc., 94(2011), pp. 1859-1864.
DOI URL |
[52] |
V. Ambegaokar , Phys. Rev., 114(1959), p. 488.
DOI URL |
[53] | H. Wang, Y. Pei A.D.L. Londe, G.J. Snyder, Adv. Mater., 23(2011), pp. 1366-1370. |
[54] |
G.A. Slack, J. Phys. Chem. Solids, 34(1973), pp. 321-335.
DOI URL |
[55] |
Z.L. Tian, L.Y. Zheng, J.M. Wang, P. Wan, J.L. Li, J.Y. Wang, J. Eur. Ceram. Soc., 36(2016), pp. 189-202.
DOI URL |
[56] |
M.J. Liu, K.J. Zhang, Q. Zhang, M. Zhang, G.J. Yang, C.X. Li, C.J. Li , Appl. Surf. Sci., 471(2019), pp. 950-959.
DOI URL |
[57] |
G.R. Li, L.S. Wang, G.J. Yang , Scripta Mater., 163(2019), pp. 142-147.
DOI URL |
[58] |
L. Chen, J. Feng, J. Adv. Ceram., 8(2019), pp. 537-544.
DOI URL |
[59] |
J.J. Liang, H. Wei, Y.L. Zhu, X.F. Sun, Z.Q. Hu, M.S. Dargusch, X.D. Yao, J. Mater. Sci. Technol., 27(2011), pp. 408-414.
DOI URL |
[60] |
B.T. Richards, H.B. Zhao H.N.G. Wadley, J. Mater. Sci., 50(2015), pp. 7939-7957.
DOI URL |
[1] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[2] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[3] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
[4] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[5] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[6] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[7] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[8] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[9] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[10] | Alexander Tkach, Olena Okhay. Comment on “Hole-pinned defect-dipoles induced colossal permittivity in Bi doped SrTiO3 ceramics with Sr deficiency” [J]. J. Mater. Sci. Technol., 2021, 65(0): 151-153. |
[11] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[12] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[13] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[14] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[15] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||