J. Mater. Sci. Technol. ›› 2021, Vol. 69: 138-147.DOI: 10.1016/j.jmst.2020.03.091
• Research Article • Previous Articles Next Articles
Z. Zhena,b, H. Wanga,b,c,*(), C.Y. Tengd, C.G. Baia,b, D.S. Xua,b,*(
), R. Yanga,b
Received:
2019-12-31
Revised:
2020-02-25
Accepted:
2020-03-13
Published:
2021-04-10
Online:
2021-05-15
Contact:
H. Wang,D.S. Xu
About author:
dsxu@imr.ac.cn (D.S. Xu).Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations[J]. J. Mater. Sci. Technol., 2021, 69: 138-147.
Fig. 1. (a1 and b1) Correspondence of super-dipole orientation and atom row in γ-TiAl and α2-Ti3Al. (a2 and b2) Construction of super-dipoles by removing atoms of the selected thickness and merging the remaining two parts.
Fig. 2. $[11\bar{2}]$ projection of super-dislocation dipolar configurations with orientations 30°, 41°, 60°, 74°, and 90° and with heights of 1d to 6d after 50 ps annealing at 1 K in γ-TiAl. Atoms are colored by their coordination number (magenta: 9, green: 10, red: 11, yellow: 12, blue: 13 and white: 14).
Fig. 3. $[1\bar{1}00]$ projection of super-dislocation dipolar configurations with orientations 30°, 41°, 60°, 74°, and 90° and with heights of 1d to 6d after 50 ps annealing at 1 K in α2-Ti3Al. Atoms are colored by their coordination number (magenta: 9, green: 10, red: 11, yellow: 12, blue: 13 and white: 14).
Fig. 4. (a1 and b1) Formation energy for super-dipoles with height 1d to 6d and orientation 30° to 90° in γ-TiAl and α2-Ti3Al, respectively. (a2 and b2) Formation energy per vacancy of a1 and b1, respectively.
Fig. 5. [111] projection of super-dipoles after 1700 K annealing for 1 ns in γ-TiAl, with orientation from 90° to 30° and heights of 1d to 6d. Atoms are colored by their coordination number (magenta: 9, green: 10, red: 11, blue: 13 and white: 14). Atoms with coordination number 12 are not shown.
Fig. 6. [0001] projection of super-dipoles after 1700 K annealing for 1 ns in α2-Ti3Al, with orientation from 90° to 30° and heights of 1d to 6d. Atoms are colored by their coordination number (magenta: 9, green: 10, red: 11, blue: 13 and white: 14). Atoms with coordination number 12 are not shown.
1d | 2d | 3d | 4d | 5d | 6d | Ti | Al | |
---|---|---|---|---|---|---|---|---|
30° | 2.52 | 1.79 | 1.14 | 1.26 | 1.26 | 1.14 | 1.49 | 0.72 |
41° | 2.45 | 1.65 | 1.28 | 1.06 | 0.94 | 1.00 | 1.49 | 0.72 |
60° | 2.32 | 1.52 | 1.18 | 1.02 | 0.98 | 0.90 | 1.49 | 0.72 |
74° | 2.55 | 1.60 | 1.26 | 0.83 | 1.00 | 0.92 | 1.49 | 0.72 |
90° | 2.49 | 1.60 | 1.26 | 0.91 | 1.01 | 0.92 | 1.49 | 0.72 |
Table 1 The formation energy per vacancy of super-dislocation dipoles with orientation from 30° to 90° and heights of 1d to 6d in γ-TiAl. And the formation energy of Ti and Al in single crystalline γ-TiAl.
1d | 2d | 3d | 4d | 5d | 6d | Ti | Al | |
---|---|---|---|---|---|---|---|---|
30° | 2.52 | 1.79 | 1.14 | 1.26 | 1.26 | 1.14 | 1.49 | 0.72 |
41° | 2.45 | 1.65 | 1.28 | 1.06 | 0.94 | 1.00 | 1.49 | 0.72 |
60° | 2.32 | 1.52 | 1.18 | 1.02 | 0.98 | 0.90 | 1.49 | 0.72 |
74° | 2.55 | 1.60 | 1.26 | 0.83 | 1.00 | 0.92 | 1.49 | 0.72 |
90° | 2.49 | 1.60 | 1.26 | 0.91 | 1.01 | 0.92 | 1.49 | 0.72 |
1d | 2d | 3d | 4d | 5d | 6d | Ti | Al | |
---|---|---|---|---|---|---|---|---|
30° | 2.35 | 1.90 | 1.62 | 1.54 | 1.21 | 1.21 | 1.47 | 1.36 |
41° | 2.22 | 1.73 | 1.24 | 1.22 | 1.05 | 0.95 | 1.47 | 1.36 |
60° | 2.15 | 1.61 | 0.97 | 1.08 | 0.92 | 0.85 | 1.47 | 1.36 |
74° | 2.13 | 1.61 | 1.17 | 1.03 | 0.88 | 0.81 | 1.47 | 1.36 |
90° | 2.12 | 1.58 | 1.16 | 1.02 | 0.88 | 0.81 | 1.47 | 1.36 |
Table 2 The formation energy per vacancy of super-dislocation dipoles with orientation from 30° to 90° and heights of 1d to 6d in α2-Ti3Al. And the formation energy of Ti and Al in single crystalline α2-Ti3Al.
1d | 2d | 3d | 4d | 5d | 6d | Ti | Al | |
---|---|---|---|---|---|---|---|---|
30° | 2.35 | 1.90 | 1.62 | 1.54 | 1.21 | 1.21 | 1.47 | 1.36 |
41° | 2.22 | 1.73 | 1.24 | 1.22 | 1.05 | 0.95 | 1.47 | 1.36 |
60° | 2.15 | 1.61 | 0.97 | 1.08 | 0.92 | 0.85 | 1.47 | 1.36 |
74° | 2.13 | 1.61 | 1.17 | 1.03 | 0.88 | 0.81 | 1.47 | 1.36 |
90° | 2.12 | 1.58 | 1.16 | 1.02 | 0.88 | 0.81 | 1.47 | 1.36 |
Fig. 7. Point defect clustering in 30° to 90° and 1d-2d super-dipoles in γ-TiAl. Atoms are colored by their number of normal nearest neighbors (invisible: 12, red: 11, orange: 10, yellow: 9, yellow green: 8, green: 7, cyan: 6, light blue: 5 and blue: 4.).
Fig. 8. Point defect clustering in 30° to 90° and 1d-2d super-dipoles in α2-Ti3Al. Atoms are colored by their number of normal nearest neighbors (invisible: 12, red: 11, orange: 10, yellow: 9, yellow green: 8, green: 7, cyan: 6, light blue: 5 and blue: 4.).
Fig. 9. Energy path of the 30°-90° 1d-2d super-dipoles in γ-TiAl calculated with the ART method. The configurations at high temperature are shown in the (a)-(j) insets.
Fig. 10. Energy path of the 30°-90° 1d-2d super-dipole in α2-Ti3Al calculated with the ART method. The configurations at high temperature are shown in the (a)-(j) insets.
[1] | R. Yang, Acta Metall. Sin. 51 (2015) 129-147 (in Chinese). |
[2] |
F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Mullauer, M. Oehring, J.D.H. Paul, Adv. Eng. Mater. 2 (2000) 699-720.
DOI URL |
[3] | Z. Pu, J. Shi, D. Zou, Z. Zhong, J. Mater. Sci. Technol. 6 (1993) 62-70. |
[4] |
G. Shao, D. Nguyen-Manh, D.G. Pettifor, P. Tsakiropoulos, Philos. Mag. Lett. 80 (2000) 703-710.
DOI URL |
[5] |
X.D. Zhang, R.V. Ramanujan, T.A. Dean, M.H. Loretto, Mater. Sci. Eng. A 185 (1994) 17-24.
DOI URL |
[6] |
Y. Liu, B. Huang, Y. He, J. Mater. Sci. Technol. 16 (2000) 605-610.
DOI URL |
[7] |
J. Chraponski, K. Rodak, J. Microsc. 223 (2006) 298-301.
DOI URL |
[8] |
R. Phillips, D. Rodney, V. Shenoy, E. Tadmor, M. Ortiz, Modelling Simul. Mater. Sci. Eng. 7 (1999) 769-780.
DOI URL |
[9] |
U. Essmann, Philos. Mag. A 45 (1982) 171-190.
DOI URL |
[10] |
H. Wang, D.S. Xu, R. Yang, P. Veyssière, Acta Mater. 57 (2009) 3725-3737.
DOI URL |
[11] | H. Mughrabi, U. Essmann, Strength Met. Alloys 2 (1979) 1101-1106. |
[12] |
M. Pelfort, Y.N. Osetsky, A. Serra, Philos. Mag. Lett. 81 (2001) 803-811.
DOI URL |
[13] |
H. Wang, D.S. Xu, P. Veyssière, R. Yang, Acta Mater. 61 (2013) 3499-3508.
DOI URL |
[14] |
L.M. Brown, Philos. Mag. 93 (2013) 3809-3820.
DOI URL |
[15] |
L.M. Brown, Mater. Sci. Eng. A 285 (2000) 35-42.
DOI URL |
[16] |
S. Zghal, A. Menand, A. Couret, Acta Mater. 46 (1998) 5899-5905.
DOI URL |
[17] |
G. Hug, A. Loiseau, P. Veyssière, Rev. Phys. Appl. 23 (1988) 673-677.
DOI URL |
[18] |
A.M. Kumar, J.P. Hirth, Philos. Mag. A 65 (1992) 841-852.
DOI URL |
[19] |
L.I. Yakovenkova, L.E. Karkina, Modelling Simul. Mater. Sci. Eng. 20 (2012), 065003.
DOI URL |
[20] | M.D. Starostenkov, N.V. Gorlov, A.N. Yeskov, Fizika. Metallov. I. Metallovedenie. 63 (1987) 405-407. |
[21] | L.E. Karkina, L.I. Yakovenkova, M.Y. Rabovskaya, Tech. Phys+. 48 (2003) 1289-1295. |
[22] |
R.R. Zope, Y. Mishin, Phys. Rev. B 68 (2003), 024102.
DOI URL |
[23] |
P.T. Li, Y.Q. Yang, W. Zhang, X. Luo, N. Jin, G. Liu, RSC Adv. 6 (2016) 54763-54767.
DOI URL |
[24] |
D.S. Xu, H. Wang, R. Yang, P. Veyssière, Acta Mater. 56 (2008) 1065-1074.
DOI URL |
[25] |
H. Wang, D.S. Xu, D. Rodney, P. Veyssière, R. Yang, Modelling Simul. Mater. Sci. Eng. 21 (2013), 025002.
DOI URL |
[26] |
D.S. Xu, H. Wang, R. Yang, A.K. Sachdev, Chin. Sci. Bull. 59 (2014) 1725-1737.
DOI URL |
[27] |
Y. He, Z. Liu, G. Zhou, H. Wang, C.G. Bai, D. Rodney, F. Appel, D.S. Xu, R. Yang, Scr. Mater. 143 (2018) 98-102.
DOI URL |
[28] | A.D. Tu, C.Y. Teng, H. Wang, D.S. Xu, Y. Fu, Z. Ren, R. Yang, Acta Metall. Sin. 55 (2019) 291-298 (in Chinese). |
[29] |
J. Li, Modelling Simul. Mater. Sci. Eng. 11 (2003) 173-177.
DOI URL |
[30] |
H. Wang, D.S. Xu, R. Yang, P. Veyssière, Acta Mater. 56 (2008) 4608-4620.
DOI URL |
[31] |
G.T. Barkema, N. Mousseau, Comput. Mater. Sci. 20 (2001) 285-292.
DOI URL |
[32] |
R. Malek, N. Mousseau, Phys. Rev. E 62 (2000) 7723.
DOI URL |
[33] |
D. Rodney, C. Schuh, Phys. Rev. Lett. 102 (2009), 235503.
PMID |
[34] |
D. Rodney, C.A. Schuh, Phys. Rev. B 80 (2009), 184203.
DOI URL |
[35] | H. Wang, D. Rodney, D.S. Xu, R. Yang, P. Veyssière, Phys. Rev. B 84 (2011), 220103(R). |
[36] |
H. Wang, D.S. Xu, D. Rodney, P. Veyssière, R. Yang, Philos. Mag. 93 (2013) 186-202.
DOI URL |
[37] |
Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, S.J. Zinkle, J. Nucl. Mater. 351 (2006) 285-294.
DOI URL |
[38] |
U. Essmann, H. Mughrabi, Philos. Mag. A 40 (1979) 731-756.
DOI URL |
[39] |
M.S. Duesbery, B. Joos, Philos. Mag. A 54 (1986) 145-163.
DOI URL |
[40] |
G. Tichy, U. Essmann, Philos. Mag. B 60 (1989) 503-512.
DOI URL |
[41] |
A. Aslanides, V. Pontikis, Philos. Mag. A 80 (2000) 2337-2353.
DOI URL |
[42] |
S. Brinckmann, R. Sivanesapillai, A. Hartmaier, Int. J. Fatigue 33 (2011) 1369-1375.
DOI URL |
[43] | J. Rabier, L. Pizzagalli, International Conference on Extended Defects in Semiconductors, University of Sussex, Brighton, U.K., 2010. |
[44] |
H. Wang, D.S. Xu, R. Yang, P. Veyssière, Acta Mater. 59 (2011) 1-9.
DOI URL |
[45] |
Q. Zhou, J. Wang, A. Misra, P. Huang, F. Wang, K. Xu, NPJ Comput. Mater. 3 (2017) 24.
DOI URL |
[46] | F. Grégori, P. Veyssière, Philos. Mag. A 80 (2000) 2933-2955. |
[47] |
F. Appel, D. Herrmann, F.D. Fischer, J. Svoboda, E. Kozeschnik, Int. J. Plast. 42 (2013) 83-100.
DOI URL |
[48] |
Y. Koizumi, T. Nakano, Y. Umakoshi, Intermetallics 8 (2000) 179-186.
DOI URL |
[1] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
[2] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[3] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[4] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[5] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[6] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[7] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[8] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[9] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[10] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[11] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[12] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[13] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[14] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[15] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||