J. Mater. Sci. Technol. ›› 2021, Vol. 69: 148-155.DOI: 10.1016/j.jmst.2020.08.023
• Research Article • Previous Articles Next Articles
Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu*(
)
Received:2020-05-21
Revised:2020-07-03
Accepted:2020-07-06
Published:2021-04-10
Online:2021-05-15
Contact:
Wei Xu
About author:*E-mail address: xuwei@ral.neu.edu.cn (W. Xu).Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel[J]. J. Mater. Sci. Technol., 2021, 69: 148-155.
| Type | Fe | Cr | Ni | C | Si | Mn | Ti | SFE |
|---|---|---|---|---|---|---|---|---|
| SUS321 | Bal. | 17.6 | 9.22 | 0.015 | 0.52 | 1.23 | 0.088 | 20 |
Table 1 Chemical composition (wt. %) and SFE (mJ/m2) of the investigated alloy[30].
| Type | Fe | Cr | Ni | C | Si | Mn | Ti | SFE |
|---|---|---|---|---|---|---|---|---|
| SUS321 | Bal. | 17.6 | 9.22 | 0.015 | 0.52 | 1.23 | 0.088 | 20 |
Fig. 1. (a) Schematic illustrations of a micro-tensile specimen where the points of monitoring for the strain (black symbols) and the EBSD scan (red symbol) are marked. (b) The locations of area A and B and the inverse pole figure (IPF) maps for γ in two areas before deformation.
Fig. 2. The crystallographic characteristics of ε and α’ in area A (grain 1, Fig. 1) during deformation. (a-c) ε (magenta area) and α’ (the rest colour area) IPF maps obtained by EBSD for the directions parallel to the rolling direction of the sample (the upper right corners in Fig. 2(a) and (b) also show the IPF maps for the directions parallel to the tangential direction of the sample; the upper right corner in Fig. 2(c) shows the phase map with special grain boundaries, where blue and white lines represent the 60 ° and 50.48 ° grain boundary, respectively). (d-f) Pole figures for γ, ε and α’, respectively. Note: (a-c) were obtained by HKL channel 5 software; (d-f) were obtained by using the MATLAB-based toolbox MTEX.
| Variant No. | Parallel plane | Parallel direction | Slip plane and direction | |
|---|---|---|---|---|
| ε1 | ε1-1 | (111) γ //(0002) ε | [10-1] γ//[2-1-10] ε | (111)[11-2] |
| ε1-2 | [-110] γ//[2-1-10] ε | (111)[-211] | ||
| ε1-3 | [0-11] γ//[2-1-10] ε | (111)[1-21] | ||
| ε2 | ε2-1 | (1-11) γ //(0002) ε | [0-1-1] γ//[2-1-10] ε | (1-11)[1-1-2] |
| ε2-2 | [110] γ//[2-1-10] ε | (1-11)[-2-11] | ||
| ε2-3 | [-101] γ//[2-1-10] ε | (1-11)[121] | ||
| ε3 | ε3-1 | (-111) γ //(0002) ε | [01-1] γ//[2-1-10] ε | (-111)[-11-2] |
| ε3-2 | [-1-10] γ//[2-1-10] ε | (-111)[211] | ||
| ε3-3 | [101] γ//[2-1-10] ε | (-111)[-1-21] | ||
| ε4 | ε4-1 | (11-1) γ //(0002) ε | [-10-1] γ//[2-1-10] ε | (11-1)[112] |
| ε4-2 | [1-10] γ//[2-1-10] ε | (11-1)[-21-1] | ||
| ε4-3 | [011] γ//[2-1-10] ε | (11-1)[1-2-1] | ||
Table 2 The 4 potential ε variants in the S-N relationship.
| Variant No. | Parallel plane | Parallel direction | Slip plane and direction | |
|---|---|---|---|---|
| ε1 | ε1-1 | (111) γ //(0002) ε | [10-1] γ//[2-1-10] ε | (111)[11-2] |
| ε1-2 | [-110] γ//[2-1-10] ε | (111)[-211] | ||
| ε1-3 | [0-11] γ//[2-1-10] ε | (111)[1-21] | ||
| ε2 | ε2-1 | (1-11) γ //(0002) ε | [0-1-1] γ//[2-1-10] ε | (1-11)[1-1-2] |
| ε2-2 | [110] γ//[2-1-10] ε | (1-11)[-2-11] | ||
| ε2-3 | [-101] γ//[2-1-10] ε | (1-11)[121] | ||
| ε3 | ε3-1 | (-111) γ //(0002) ε | [01-1] γ//[2-1-10] ε | (-111)[-11-2] |
| ε3-2 | [-1-10] γ//[2-1-10] ε | (-111)[211] | ||
| ε3-3 | [101] γ//[2-1-10] ε | (-111)[-1-21] | ||
| ε4 | ε4-1 | (11-1) γ //(0002) ε | [-10-1] γ//[2-1-10] ε | (11-1)[112] |
| ε4-2 | [1-10] γ//[2-1-10] ε | (11-1)[-21-1] | ||
| ε4-3 | [011] γ//[2-1-10] ε | (11-1)[1-2-1] | ||
| Variant No. | Parallel plane | Parallel direction | Variant No. | Parallel plane | Parallel direction |
|---|---|---|---|---|---|
| V1 | (111) γ //(011) α’ | [-101] γ//[-1-11] α’ | V13 | (-111) γ //(011) α’ | [0-11] γ//[-1-11] α’ |
| V2 | [-101] γ//[-11-1] α’ | V14 | [0-11] γ//[-11-1] α’ | ||
| V3 | [01-1] γ//[-1-11] α’ | V15 | [-10-1] γ//[-1-11] α’ | ||
| V4 | [01-1] γ//[-11-1] α’ | V16 | [-10-1] γ//[-11-1] α’ | ||
| V5 | [1-10] γ//[-1-11] α’ | V17 | [110] γ//[-1-11] α’ | ||
| V6 | [1-10] γ//[-11-1] α’ | V18 | [110] γ//[-11-1] α’ | ||
| V7 | (1-11) γ //(011) α’ | [10-1] γ//[-1-11] α’ | V19 | (11-1) γ //(011) α’ | [-110] γ//[-1-11] α’ |
| V8 | [10-1] γ//[-11-1] α’ | V20 | [-110] γ//[-11-1] α’ | ||
| V9 | [-1-10] γ//[-1-11] α’ | V21 | [0-1-1] γ//[-1-11] α’ | ||
| V10 | [-1-10] γ//[-11-1] α’ | V22 | [0-1-1] γ//[-11-1] α’ | ||
| V11 | [011] γ//[-1-11] α’ | V23 | [101] γ//[-1-11] α’ | ||
| V12 | [011] γ//[-11-1] α’ | V24 | [101] γ//[-11-1] α’ |
Table 3 The 24 potential α’ variants in the K-S relationship[33].
| Variant No. | Parallel plane | Parallel direction | Variant No. | Parallel plane | Parallel direction |
|---|---|---|---|---|---|
| V1 | (111) γ //(011) α’ | [-101] γ//[-1-11] α’ | V13 | (-111) γ //(011) α’ | [0-11] γ//[-1-11] α’ |
| V2 | [-101] γ//[-11-1] α’ | V14 | [0-11] γ//[-11-1] α’ | ||
| V3 | [01-1] γ//[-1-11] α’ | V15 | [-10-1] γ//[-1-11] α’ | ||
| V4 | [01-1] γ//[-11-1] α’ | V16 | [-10-1] γ//[-11-1] α’ | ||
| V5 | [1-10] γ//[-1-11] α’ | V17 | [110] γ//[-1-11] α’ | ||
| V6 | [1-10] γ//[-11-1] α’ | V18 | [110] γ//[-11-1] α’ | ||
| V7 | (1-11) γ //(011) α’ | [10-1] γ//[-1-11] α’ | V19 | (11-1) γ //(011) α’ | [-110] γ//[-1-11] α’ |
| V8 | [10-1] γ//[-11-1] α’ | V20 | [-110] γ//[-11-1] α’ | ||
| V9 | [-1-10] γ//[-1-11] α’ | V21 | [0-1-1] γ//[-1-11] α’ | ||
| V10 | [-1-10] γ//[-11-1] α’ | V22 | [0-1-1] γ//[-11-1] α’ | ||
| V11 | [011] γ//[-1-11] α’ | V23 | [101] γ//[-1-11] α’ | ||
| V12 | [011] γ//[-11-1] α’ | V24 | [101] γ//[-11-1] α’ |
Fig. 3. The crystallographic characteristics of α’ in area B (Fig. 1) during deformation. (a-c) α’ IPF maps obtained by EBSD for the directions parallel to the rolling direction of the sample (the lower right corner in Fig. 3a also shows the α’ IPF map for the directions parallel to the tangential direction of the sample). (d-e) Pole figures of γ and α’, respectively. Note: (a-c) were obtained by HKL channel 5 software; (d-e) were obtained by using the MATLAB-based toolbox MTEX.
Fig. 4. The calculated value of strain works for ε and α’ transformation under 200 MPa uniaxial tensile stress. (a) 12 strain works for ε variants formed in grain 1. (b) 6 strain works for α’ variants in the ε3 to α’ in grain 1. (c) 24 strain works for α’ formed in grain 2. The Euler angle for grain 1 is [318, 149, 180], and the Euler angle for grain 2 is [141, 177, 237].
| [1] |
V. S.Y.Injeti, Z.C. Li, B. Yu, R.D.K. Misra, Z.H. Cai, H. Ding, J. Mater. Sci. Technol. 34 (2018) 745-755.
DOI URL |
| [2] |
M.H. Zhang, H.Y. Chen, Y.K. Wang, S.J. Wang, R.G. Li, S.L. Li, Y.D. Wang, J. Mater. Sci. Technol. 35 (2019) 1779-1786.
DOI URL |
| [3] |
Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S. M.L.Nai, J. Wei, J. Mater. Sci. Technol. 35 (2019) 388-394.
DOI |
| [4] |
M.H. Cai, H.S. Huang, J.H. Su, H. Ding, P.D. Hodgson, J. Mater. Sci. Technol. 34 (2018) 1428-1435.
DOI URL |
| [5] |
Y. Tian, O.I. Gorbatov, A. Borgenstam, A.V. Ruban, P. Hedström, Metall. Mater. Trans. A 48 (2017) 1-7.
DOI URL |
| [6] | Y. Tian, A. Borgenstam, P. Hedström, Mater. Today Proc. 2 (2015) S687-S690. |
| [7] |
S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, S. Lee, Acta Mater. 100 (2015) 39-52.
DOI URL |
| [8] |
H. Kim, J. Park, J.E. Jung, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 641 (2015) 340-347.
DOI URL |
| [9] |
W. Liu, H. Bunge, Mater. Lett. 10 (1991) 336-343.
DOI URL |
| [10] |
H. Jafarian, E. Borhani, A. Shibata, N. Tsuji, J. Alloys Compd. 577 (2013) S668-S672.
DOI URL |
| [11] |
T.H. Lee, C.S. Oh, S.J. Kim, Scr. Mater. 58 (2008) 110-113.
DOI URL |
| [12] |
X. Zhang, E. Gautier, A. Simon, Acta Metall. 37 (1989) 487-497.
DOI URL |
| [13] |
G.B. Olson, M. Cohen, Metall. Trans. A 13 (1982) 1907-1914.
DOI URL |
| [14] |
B.R. Kumar, A. Singh, B. Mahato, P. De, N. Bandyopadhyay, D. Bhattacharya, Mater. Sci. Eng. A 429 (2006) 205-211.
DOI URL |
| [15] |
H.F.G. de Abreu, M.J.G. de Silva, L.F.G. Herculano, H. Bhadeshia, Mat. Res. 12 (2009) 291-297.
DOI URL |
| [16] |
N. Gey, B. Petit, M. Humbert, Metall. Mater. Trans. A 36 (2005) 3291-3299.
DOI URL |
| [17] |
H. de Abreu, M.Gomes da Silva, A. Maia do Nascimento, F. Freitas, Mater. Sci. Technol. 27 (2011) 1627-1631.
DOI URL |
| [18] |
M. Butrón-Guillén, C.D.C. Viana, J. Jonas, Metall. Mater. Trans. A 28 (1997) 1755-1768.
DOI URL |
| [19] |
Y. Tian, A. Borgenstam, P. Hedström, J. Alloys Compd. 766 (2018) 131-139.
DOI URL |
| [20] | A. Erfan, M.R. William, J. Mater. Sci. Technol. 33 (2017) 311-320. |
| [21] |
B. Hu, H.W. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33 (2017) 1457-1464.
DOI URL |
| [22] | M. Humbert, B. Petit, B. Bolle, N. Gey, Mater. Sci. Eng. A 454 (2007) 508-517. |
| [23] |
S. Kundu, H. Bhadeshia, Scr. Mater. 57 (2007) 869-872.
DOI URL |
| [24] |
N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, Acta Mater. 58 (2010) 895-903.
DOI URL |
| [25] |
B. Petit, N. Gey, M. Cherkaoui, B. Bolle, M. Humbert, Int. J. Plast. 23 (2007) 323-341.
DOI URL |
| [26] |
T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi, Acta Mater. 84 (2015) 330-338.
DOI URL |
| [27] | S. Grigull, Texture, Stress, and Microstruct 35 (2003) 153-162. |
| [28] |
C. Celada-Casero, H. Kooiker, M. Groen, J. Post, D. San-Martin, Metals 7 (2017) 271.
DOI URL |
| [29] |
R. Schramm, R. Reed, Metall. Trans. A 6 (1975) 1345-1351.
DOI URL |
| [30] |
J.L. Wang, X.H. Xi, Y. Li, C.C. Wang, W. Xu, Mater. Charact. 151 (2019) 267-272.
DOI URL |
| [31] |
D. Guan, W.M. Rainforth, L. Ma, B. Wynne, J. Gao, Acta Mater. 126 (2017) 132-144.
DOI URL |
| [32] |
I. Kapoor, Y. Lan, A. Rijkenberg, Z. Li, V. Janik, Mater. Charact. 145 (2018) 686-696.
DOI URL |
| [33] | S. Morito, H. Tanaka, R. Konishi, T. Furuhara, Maki, Acta Mater. 51 (2003) 1789-1799. |
| [34] | S. Takaki, K. Fukunaga, J. Syarif, T. Tsuchiyama, Mater. Trans. (2004) 2245-2251. |
| [35] |
C. Celada-Casero, J. Sietsma, M.J. Santofimia, Mater. Des. 167 (2019), 107625.
DOI URL |
| [36] |
S. Pisarik, D. Van Aken, Metall. Mater. Trans. A 45 (2014) 3173-3178.
DOI URL |
| [37] |
Y. Tian, U. Lienert, A. Borgenstam, T. Fischer, P. Hedström, Scr. Mater. 136 (2017) 124-127.
DOI URL |
| [38] |
K. Sato, M. Ichinose, Y. Hirotsu, Y. Inoue, ISIJ Int. 29 (1989) 868-877.
DOI URL |
| [39] |
H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54 (2006) 1279-1288.
DOI URL |
| [40] |
J. Brooks, M. Loretto, R. Smallman, Acta Metall. 27 (1979) 1839-1847.
DOI URL |
| [41] |
T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, M. Ichihara, Acta Metall. 25 (1977) 1151-1162.
DOI URL |
| [42] | J.P. Hirth, J. Lothe, New York, 1982. |
| [43] |
E. Welsch, D. Ponge, S.M.Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, D. Raabe, Acta Mater. 116 (2016) 188-199.
DOI URL |
| [44] |
J.L. Wang, M.H. Huang, X.H. Xi, C.C. Wang, W. Xu, Mater. Charact. 163 (2020), 110234.
DOI URL |
| [45] |
P. Bate, B. Hutchinson, Acta Mater. 48 (2000) 3183-3192.
DOI URL |
| [46] |
N. Li, Y.D. Wang, W.J. Liu, Z.N. An, J.P. Liu, R. Su, J. Li, P.K. Liaw, Acta Mater. 64 (2014) 12-23.
DOI URL |
| [47] |
A.P. Baur, C. Cayron, R.E. Logé, J. Appl. Crystallogr. 50 (2017) 1646-1652.
DOI URL |
| [1] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
| [2] | panelJianwei Xu, Weidong Zeng, Dadi Zhou, Wei Chen, Shengtong He, Xiaoyong Zhang. Analysis of crystallographic orientation and morphology of microstructure during hot working for an alpha/beta titanium alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 1-13. |
| [3] | L.R. Zeng, H.L. Chen, X. Li, L.M. Lei, G.P. Zhang. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 782-787. |
| [4] | Xiaoqing Jiang, Bradley P. Wynne, Jonathan Martin. Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34(1): 198-208. |
| [5] | Zhou Yinghui, Liu Yongchang, Zhou Xiaosheng, Liu Chenxi, Yu Jianxin, Huang Yuan, Li Huijun, Li Wenya. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33(12): 1448-1456. |
| [6] | Li Changsheng, Ma Biao, Song Yanlei, Zheng Jianjun, Wang Jikai. Grain refinement of non-magnetic austenitic steels during asymmetrical hot rolling process [J]. J. Mater. Sci. Technol., 2017, 33(12): 1572-1576. |
| [7] | Yazhou Zhang, Guifu Ding, Hong Wang, Ping Cheng. Microstructure of Electrodeposited Cu Micro-cylinders in High-Aspect-Ratio Blind Holes and Crystallographic Texture of the Cu Overburden Film [J]. J. Mater. Sci. Technol., 2016, 32(4): 355-361. |
| [8] | Rui Chen, Qingyan Xu, Baicheng Liu. A Modified Cellular Automaton Model for the Quantitative Prediction of Equiaxed and Columnar Dendritic Growth [J]. J. Mater. Sci. Technol., 2014, 30(12): 1311-1320. |
| [9] | Wen LI, Tao JIN, Xiaofeng SUN, Yi GUO, Hengrong GUAN, Zhuangqi HU. Transient Liquid Phase Bonding of Ni-base Single Crystal Superalloy [J]. J Mater Sci Technol, 2002, 18(01): 54-56. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
