Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 198-208    DOI: 10.1016/j.jmst.2017.11.024
Orginal Article Current Issue | Archive | Adv Search |
Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy
Xiaoqing Jianga*(), Bradley P. Wynneb, Jonathan Martinc
a Engineering Research Center of Advanced Manufacturing Technology for Automotive Structural Parts, Ministry of Education, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
b Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
c The Welding Institute, Granta Park, Great Abington Cambridge, CB21 6AL, UK
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stationary shoulder friction stir welding of Ti-6Al-4V of 7 mm thickness was conducted with varying welding speeds and rotation speeds. Variant selection analysis was carried out based on the inherited α phase texture and the reconstructed β phase texture. The weld surfaces became significantly smoother with increasing welding speed and decreasing rotation speed. Heat input decreased greatly with increased welding speed and it decreased slightly with decreased rotation speed. The orientation relationship between the prior β grains was measured based on the reconstructed electron backscattered diffraction (EBSD) data. Weak Variant selection has occurred in all the welds because most of the prior β grains did not share {110} poles. Strong links between crystal orientation of the prior β grains and hardness have been found.

Key words:  Stationary shoulder friction stir welding      Texture      Variant selection      Hardness     
Received:  21 March 2017     
Corresponding Authors:  Jiang Xiaoqing     E-mail:  xjiang@bjut.edu.cn

Cite this article: 

Xiaoqing Jiang, Bradley P. Wynne, Jonathan Martin. Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy. J. Mater. Sci. Technol., 2018, 34(1): 198-208.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.11.024     OR     https://www.jmst.org/EN/Y2018/V34/I1/198

Fig. 1.  Photographs of the weld surface of (a) Weld A, (b) Weld B, (c) Weld C, (d) Weld D and (e) Weld E.
Fig. 2.  Heat input of all the welded joints along the travelling distance.
Fig. 3.  Scanned macrographs of the cross sections of (a) Weld A, (b) Weld B, (c) Weld C, (d) Weld D and (e) Weld E.
Fig. 4.  A pair of {0001} pole figures of the low temperature α phase and{110} pole figures of the reconstructed high temperature β phase on a central horizontal line with maximum density for (a) Weld A, (b) Weld B, (c) Weld C, (d) Weld D and (e) Weld E.
Fig. 5.  Weld E (a) grain boundary α (GBα) grains in an IPF map of the low temperature hcp α phase; (b) specific grain boundary misorientation map, (c) color key for the specific misorientation map; (d) IPF map of the reconstructed bcc β phase; (e) {0001} and {112ˉ0} pole figures of the GBα grains; (f) pole figures of β1 and β2.
Fig. 6.  Weld B (a) α1, α2, GBα3 and GBα4 in an IPF map of the low temperature hcp α phase; (b) specific grain boundary misorientation map; (c) Euler coloring map of the reconstructed bcc β phase; (d) {0001} pole figure of α1, α2, GBα3 and GBα4; (e) {110} pole figure of β1 and β2; (f) pole figure of β1 and β3.
Fig. 7.  Weld C (a) IPF map of the low temperature hcp α phase; (b) IPF map of the reconstructed bcc β phase; (c) {0001} pole figures of α1, α2 and GBα1; (d) {0001} pole figures of α3 and GBα2; (e) {110} pole figures of β1 and β3; (f) {110} pole figures of β1 and β2.
Fig. 8.  Number of (a) pair of prior β grains with parallel (110) plane, (b) pair of prior β grains with nearly parallel {110} plane (c) pair of prior β grains that have no close crystallographic relation.
Fig. 9.  Pole intensity histograms of (a) the six poles in the {0001} pole figure of the α phase texture and (b) the corresponding six poles in the {110} pole figures of the reconstructed β phase texture from the RS to the AS of the SZ of Weld E; Similarily, (c) and (d) of Weld B, (e) and (f) of Weld C.
Fig. 10.  Histograms of ratio of {0001}α ? {110}β pole intensity for the six poles 1-6 from the RS to the AS of the SZ of (a) Weld E, (b) Weld B and (c) Weld C; (d) shows the schematic {0001}/{110} pole figure indicating the position of the six poles 1-6.
Fig. 11.  Variant selection intensity plotted as a function of the prior β grain size on the central horizontal line of all the five welds.
Fig. 12.  The largest prior β grain size and the average thickness of the α laths plotted against heat input in the weld center for all the five welds.
Fig. 13.  Comparison of (a) microhardness and (b) IPF for Weld A.
Fig. 14.  Comparison of (a) microhardness and (b) IPF for Weld D.
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, T. Smith, C.J. Dawes,Friction-stir Butt Welding, GB Patent No. 9125978.8, International PatentApplication No. PCT/GB92/02203 (1991).
[2] P.L. Threadgill, J. Mater. Sci.Technol. 31(2015) 953-961.
[3] W. Xu, J. Liu, D. Chen, Influence of Test Temperature on the Tensile Propertiesalong the Thickness in a Friction Stir Welded Aluminum Alloy, J.Mater. Sci.Technol. 31(2015) 953-961.
[4] M.J. Russell, L. Threadgill, M.J. Thomas, B.P.Wynne, in: M. Niinomi, et al.(Eds.), Static Shoulder Friction Stir Welding of Ti-6Al-4 V; Process andEvaluation, Proceedings of the 11th World Conference on Titanium, Kyoto,Japan, 2007, pp. 1095-1098.
[5] W.D.P. Brassington, P.A. Colegrove, Sci. Technol. Weld. Join. 22 (4) (2017)300-318.
[6] R.W. Fonda, K.E. Knipling, Acta Mater. 58(2010) 6452-6463.
[7] P.S. Davies, B.P. Wynne, W.M. Rainforth, M.J. Thomas, P.L. Threadgill, Metall.Mater. Trans. A 42 (2011) 2278-2289.
[8] A.L. Pilchak, W. Tang, H. Sahiner, A.P. Reynolds, J.C. Williams, Metall. Mater.Trans. A 42 (2011) 745-762.
[9] X. Jiang, B.P. Wynne, J. Martin, Sci. Technol. Weld. Join. 20(2015) 594-600.
[10] N. Gey, M. Humbert, Acta Mater. 50(2002) 277-287.
[11] P.S. Davies, An Investigation of Microstructure and Texture Evolution in theNear-_ Titanium Alloy Timetal?834, Ph.D. Thesis, the University of Sheffield,2009.
[12] R. Shi, Y. Wang, Acta Mater. 61(2013) 6006-6024.
[13] Z. Li, J. Li, H.M. Wang, J. Alloys Compd. 661(2016) 126-135.
[14] M.R. Daymond, R.A. Holt, S. Cai, Mosbrucker, S.C. Vogel, Acta Mater. 58(2010)4053-4066.
[15] T. Furuhara, T. Maki, Mater. Sci. Eng. A 312 (2001) 145-154.
[16] T. Furuhara, T. Maki, T. Makino, J. Mater. Proc.Technol. 117(2001) 318-323.
[17] D. Qiu, R. Shi, D. Zhang, W. Lu, Y. Wang, Acta Mater. 88(2015) 218-231.
[18] S.C. Wang, M. Aindow, M.J. Starink, Acta Mater. 51 (9) (2003) 2485-2503.
[19] D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, H.L. Fraser,Acta Mater. 51(2003) 4679-4691.
[20] N. Stanford, P.S. Bate, Acta Mater. 52(2004) 5215-5224.
[21] M. Humbert, L. Germain, N. Gey, P. Bocher, M. Jahazi, Mater. Sci. Eng. A 430(2006) 157-164.
[22] C. Cayron, Scr. Mater. 59(2008) 570-573.
[23] G.C. Obasi, S. Birosca, J.Q. da Fonseca, M.Preuss, Acta Mater. 60(2012)1048-1058.
[24] R. Shi, V. Dixit, H.L. Fraser, Y. Wang, Acta Mater. 75(2014) 156-166.
[25] D. Bhattacharyya, G.B. Viswanathan, H.L. Fraser, Acta Mater. 55(2007)6765-6778.
[26] H. Beladi, Q. Chao, G.S. Rohrer, Acta Mater. 80(2014) 478-489.
[27] S. Kar, T. Searles, E. Lee, G.B. Viswanathan, H.L. Fraser, J. Tiley, R. Banerjee,Metall. Mater. Trans. A 37 (2006) 559-566.
[28] S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41(2010) 3422-3434.
[29] W. Chen, C.J. Boehlert, Mater. Charact. 62(2011) 333-339.
[30] S. Mironov, Y. Zhang, Y.S. Sato, H. Kokawa, Scr. Mater. 59(2008)511-514.
[31] R.J. Wilson, V. Randle, W.J. Evans, Philos Mag. A 76 (1997) 471-480.
[1] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[2] Mengcheng Zhou, Xinfang Zhang. Optimization of <001> grain gene based on texture hereditary behavior of magnetic materials[J]. 材料科学与技术, 2020, 38(0): 1-6.
[3] Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method[J]. 材料科学与技术, 2020, 38(0): 125-134.
[4] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[5] Hexiong Zhang, Xinfang Zhang. Uniform texture in Al-Zn-Mg alloys using a coupled force field of electron wind and external load[J]. 材料科学与技术, 2020, 36(0): 149-159.
[6] Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy[J]. 材料科学与技术, 2020, 43(0): 104-118.
[7] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[8] Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. 材料科学与技术, 2020, 39(0): 99-105.
[9] Jialin Wu, Li Jin, Jie Dong, Fenghua Wang, Shuai Dong. The texture and its optimization in magnesium alloy[J]. 材料科学与技术, 2020, 42(0): 175-189.
[10] Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel[J]. 材料科学与技术, 2020, 45(0): 35-43.
[11] Yingdong Zhang, Fusen Yuan, Fuzhou Han, Muhammad Ali, Wenbin Guo, Geping Li, Chengze Liu, Hengfei Gu. The influence of microtexture on the formation mechanism of nodules in Zircaloy-4 alloy tube[J]. 材料科学与技术, 2020, 47(0): 68-75.
[12] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[13] Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy[J]. 材料科学与技术, 2020, 45(0): 133-145.
[14] Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling[J]. 材料科学与技术, 2020, 41(0): 98-104.
[15] Zhong-Zheng Jin, Xiu-Ming Cheng, Min Zha, Jian Rong, Hang Zhang, Jin-Guo Wang, Cheng Wang, Zhi-Gang Li, Hui-Yuan Wang. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg-Al-Zn alloys during gradient hot rolling[J]. 材料科学与技术, 2019, 35(9): 2017-2026.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.